Ergosterol is an economically important metabolite produced by yeast. To improve the production of ergosterol by Saccharomyces cerevisiae YEH56 (pHXA42) from molasses, a cheap and regenerative material, different strategies were applied. First, Plackett-Burman design and central composite design were applied to screen the significant factors in fermentation medium using ergosterol yield (g/L) as the response value. Ergosterol yield reached 371.56 mg/L by using the optimal fermentation medium in shake-flask culture (total sugar in molasses 40 g/L, KH2PO4 1 g/L, K2HPO4 1.86 g/L, CuSO4 x 5H2O 17.5 mg/L, FeSO4 x 7H2O 13.9 mg/L, MgSO4 x 5H2O 12.3 mg/L, corn steep liquor 10 mL/L), which was increased by 29.5% compared with the initial culture. Second, ergosterol yield was increased by 62.1% using a pH-control strategy in a 5-L bioreactor. Third, ergosterol production was improved further by using molasses feeding strategy. After 38 h fermentation, ergosterol yield reached 1 953.85 mg/L, which was 3.2 times of that in batch fermentation. Meanwhile, ergosterol production rate was increased by 42.7% compared with that in the batch culture.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ergosterol yield
16
ergosterol production
12
ergosterol
8
fermentation medium
8
yield reached
8
fermentation ergosterol
8
mg/l
5
[improving ergosterol
4
production
4
molasses
4

Similar Publications

Mushrooms are a raw material rich in many nutritional compounds, and that is why a number of them are widely known as functional food. They contain fatty acids, carbohydrates, lycopene, sterols, lovastatin, trace elements, and other valuable compounds that show a wide range of properties, such as hepatoprotective, anticancer, antiviral, etc. For more efficient utilisation of mushrooms' biologically active substances, widespread supercritical carbon dioxide extraction (Sc-CO) was used as an efficient way to isolate the high-value phytoconstituents from this type of raw material.

View Article and Find Full Text PDF

Antifungal Activity of Genistein Against Phytopathogenic Fungi Through ROS-Mediated Lipid Peroxidation.

Plants (Basel)

January 2025

Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), The SATCM's Key Unit of Discovering and Developing New Marine TCM Drugs, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.

() is a necrotrophic fungus responsible for apple Valsa canker, which significantly diminishes apple production yields and quality in China. Our serendipitous findings revealed that genistein significantly inhibits the mycelial growth of , with an inhibition rate reaching 42.36 ± 3.

View Article and Find Full Text PDF

Cercosporidium personatum (CP) causes peanut late leaf spot (LLS) disease with 70% yield losses unless controlled by fungicides. CP grows slowly in culture, exhibiting variable phenotypes. To explain those variations, we analyzed the morphology, genomes, transcriptomes and chemical composition of three morphotypes, herein called RED, TAN, and BROWN.

View Article and Find Full Text PDF

Effects of mycelium post-ripening time on the yield, quality, and physicochemical properties of Pleurotus geesteranus.

Sci Rep

December 2024

Hangzhou Academy of Agricultural Sciences, 261 Zhusi Road, Zhuangtang Street, Hangzhou, 310024, Zhejiang, China.

This study determined the effects of the mycelium post-ripening time on the growth of Pleurotus geesteranus and the substrate metabolism. The characteristic indexes and timing reflecting the physiological maturity of P. geesteranus mycelium were identified to facilitate precise cultivation in factories.

View Article and Find Full Text PDF

Fusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease that severely affects crop yield and quality worldwide. The catabolite responsive elements A (CreA) plays a critical role in numerous cellular processes in eukaryotes. In this study, we performed a functional characterization of CreA in F.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!