5D parameter estimation of near-field sources using hybrid evolutionary computational techniques.

ScientificWorldJournal

Electrical Department, Air University, Islamabad 44000, Pakistan.

Published: January 2015

Hybrid evolutionary computational technique is developed to jointly estimate the amplitude, frequency, range, and 2D direction of arrival (elevation and azimuth angles) of near-field sources impinging on centrosymmetric cross array. Specifically, genetic algorithm is used as a global optimizer, whereas pattern search and interior point algorithms are employed as rapid local search optimizers. For this, a new multiobjective fitness function is constructed, which is the combination of mean square error and correlation between the normalized desired and estimated vectors. The performance of the proposed hybrid scheme is compared not only with the individual responses of genetic algorithm, interior point algorithm, and pattern search, but also with the existing traditional techniques. The proposed schemes produced fairly good results in terms of estimation accuracy, convergence rate, and robustness against noise. A large number of Monte-Carlo simulations are carried out to test out the validity and reliability of each scheme.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3948471PMC
http://dx.doi.org/10.1155/2014/310875DOI Listing

Publication Analysis

Top Keywords

near-field sources
8
hybrid evolutionary
8
evolutionary computational
8
genetic algorithm
8
pattern search
8
interior point
8
parameter estimation
4
estimation near-field
4
sources hybrid
4
computational techniques
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!