Immunomodulatory mechanisms of action of calcitriol in psoriasis.

Indian J Dermatol

Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, School of Medicine, Sacramento, California, USA.

Published: March 2014

Background: Calcitriol is well known for its therapeutic efficacy in psoriasis, but its mechanism of action is still unclear. In this study, we tried to elucidate the precise mechanism of calcitriol for its therapeutic efficacy in psoriasis.

Materials And Methods: Proliferation and apoptosis studies were done to determine the effect of calcitriol on normal human epidermal keratinocytes (NHEKs) and T lymphocytes. To elucidate the effect of Calcitriol on relevant chemokines and epidermal proteins of psoriasis, real-time polymerase chain reaction were done on the modified reconstructed human epidermis (RHE) an in vitro model of psoriasis. All experiments were done in triplicate. Results were expressed as mean ± standard error of mean.

Results And Conclusions: In vitro, Calcitriol showed significant inhibition of NHEKs and T lymphocyte proliferation by inducing apoptosis of these cells. Moreover, in an in vitro model of psoriasis (RHE), Calcitriol significantly inhibited relevant gene expression of chemokines (Interleukin-8, Regulated upon Activation Normal T-cell Expressed and Secreted [RANTES]) and psoriasin (S100A7). Here, we observed that Calcitriol inhibits critical pathological events associated with the inflammatory-proliferative cascades of psoriasis. Calcitriol induced apoptosis of NHEKs and T lymphocytes as well as inhibited gene expression of relevant chemokines and epidermal proteins in the in vitro model of psoriasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969668PMC
http://dx.doi.org/10.4103/0019-5154.127668DOI Listing

Publication Analysis

Top Keywords

vitro model
12
model psoriasis
12
calcitriol
9
therapeutic efficacy
8
nheks lymphocytes
8
relevant chemokines
8
chemokines epidermal
8
epidermal proteins
8
gene expression
8
psoriasis
7

Similar Publications

Objective: To investigate how surface treatment affects the color of enamel and dentin, and to evaluate whether the color differences are acceptable.

Materials And Methods: Freshly extracted premolars were prepared using diamond burs (blue, red, and yellow tapes). Tooth surfaces were divided into control and acid-etched areas and treated with phosphoric acid (5, 15, 30, 45, and 60 s).

View Article and Find Full Text PDF

Retinal pathological angiogenesis (PA) is a common hallmark in proliferative retinopathies, including age-related macular degeneration (AMD), proliferative diabetic retinopathy (PDR), and retinopathy of prematurity (ROP). The mechanisms underlying PA is complex and incompletely understood. In this study, we investigated the role of extracellular matrix (ECM) protein biglycan (BGN) in PA using an oxygen-induced retinopathy (OIR) mouse model, along with hypoxia (1% O) conditions for incubating pericytes and endothelial cells in vitro.

View Article and Find Full Text PDF

Pancreatic cancer is characterized by occult onset, low early diagnosis rate, rapid progress, and poor prognosis. Due to the low response rate and low PD-L1 expression in pancreatic cancer, the therapeutic application of PL-L1 inhibitors in pancreatic cancer is greatly limited. In vitro studies showed that the expression of PD-L1 increased in pancreatic cancer cells stimulated by fluorouracil (5-FU).

View Article and Find Full Text PDF

The etiology and pathogenesis of Alzheimer's disease (AD) are complex, and currently, no comprehensive treatment measures exist. In this study, we initially utilized ultra-high-performance liquid chromatography with quadrupole orbitrap mass spectrometry (UHPLC-QE-MS) to profile the bioactive constituents of SZLOL present in the bloodstream. Subsequent Y-maze experimental data demonstrated that SZLOL could ameliorate short-term memory deficits in APP/PS1 mice.

View Article and Find Full Text PDF

Background: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is one of the most common inherited cerebral small vessel diseases caused by the NOTCH3 gene mutation. This mutation leads to the accumulation of NOTCH3 extracellular domain protein (NOTCH3) into the cerebral arterioles, causing recurrent stroke, white matter lesions, and cognitive impairment. With the development of gene sequencing technology, cysteine-sparing mutations can also cause CADASIL disease, however, the pathogenicity and pathogenic mechanisms of cysteine-sparing mutations remain controversial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!