Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Inverse carbon-free sandwich structures with formula E2P4 (E=Al, Ga, In, Tl) have been proposed as a promising new target in main-group chemistry. Our computational exploration of their corresponding potential-energy surfaces at the S12h/TZ2P level shows that indeed stable carbon-free inverse-sandwiches can be obtained if one chooses an appropriate Group 13 element for E. The boron analogue B2P4 does not form the D(4h)-symmetric inverse-sandwich structure, but instead prefers a D(2d) structure of two perpendicular BP2 units with the formation of a double B-B bond. For the other elements of Group 13, Al-Tl, the most favorable isomer is the D(4h) inverse-sandwich structure. The preference for the D(2d) isomer for B2P4 and D(4h) for their heavier analogues has been rationalized in terms of an isomerization-energy decomposition analysis, and further corroborated by determination of aromaticity of these species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201304685 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!