A set of structures designed for the recognition of glucosides has been obtained by systematically destructuring a tripodal aminopyrrolic cage receptor that selectively recognizes octyl-β-D-glucopyranoside (OctβGlc). NMR spectroscopy and isothermal titration calorimetry binding measurements showed that cleavage of one pillar of the cage was beneficial to the binding properties of the receptor, as long as two residual amino groups of the cleaved pillar were present. Removal of these two residual amino groups produced a dramatic loss of affinity for OctβGlc of the resulting monocyclic analogue of the parent cage receptor. A significant improvement in the binding ability was achieved by replacing one pillar with two aminopyrrolic hydrogen-bonding arms, despite the loss of a preorganized structure. In contrast to the cage receptor, recognition of OctβGlc was observed, even in a competitive medium (30 % DMF in chloroform). Structural studies in solution, carried out through NMR spectroscopy and molecular modeling calculations, led to the elucidation of the 3D binding modes of the side-armed monocyclic receptors; this highlighted the key role of the amino groups and demonstrated the occurrence of a rotaxane-like complex, which featured the octyl chain of the glucoside threaded through the macrocyclic ring.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201400365DOI Listing

Publication Analysis

Top Keywords

cage receptor
16
amino groups
12
aminopyrrolic cage
8
nmr spectroscopy
8
residual amino
8
cage
5
receptor
5
systematic dissection
4
dissection aminopyrrolic
4
receptor β-glucopyranosides
4

Similar Publications

Effect of Capromorelin on Appetite and Weight Gain of Domestic Pigeons ().

J Avian Med Surg

January 2025

Department of Small Animal Medicine and Surgery (Zoological Medicine), University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA,

Weight loss and decreased appetite are commonly encountered sequela of disease and stress in avian patients. However, there is currently minimal information in the veterinary literature regarding appetite stimulation in birds. Capromorelin is a potent agonist of the growth hormone secretagogue receptor and increases food consumption via direct stimulation of the hunger centers of the hypothalamus.

View Article and Find Full Text PDF

Cannabinoid receptor-1 (CB1R) signaling in the dorsal striatum regulates the shift from flexible to habitual behavior in instrumental outcome devaluation. Based on prior work establishing individual, sex, and experience-dependent differences in Pavlovian behaviors, we predicted a role for dorsomedial striatum (DMS) CB1R signaling in driving rigid responding in Pavlovian autoshaping and outcome devaluation. We trained male and female Long Evans rats in Pavlovian Lever Autoshaping (PLA).

View Article and Find Full Text PDF

Assessment of impulsivity using an automated, self-adjusting delay discounting procedure.

Behav Brain Res

March 2025

Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Center, location VU Medical Center, Amsterdam, The Netherlands. Electronic address:

Modelling delay discounting behavior in rodents is important for understanding the neurobiological mechanisms underlying cognitive control and associated impulsivity disorders. Conventional rodent delay discounting procedures require extensive training and frequent experimenter interaction, as rodents are tested in separate operant chambers away from their home cage. To address these limitations, we adapted and characterize here a self-adjusting delay discounting procedure to an automated CombiCage setup.

View Article and Find Full Text PDF

Highly Rigid, Yet Conformationally Adaptable, Bisporphyrin -Cage Receptors Afford Outstanding Binding Affinities, Chelate Cooperativities, and Substrate Selectivities.

J Am Chem Soc

January 2025

Nanostructured Molecular Systems and Materials group, Organic Chemistry Department, Universidad Autónoma de Madrid, Madrid 28049, Spain.

If we aim to develop efficient synthetic models of protein receptors and enzymes, we must understand the relationships of intra- and intermolecular interactions between hosts and guests and how they mutually influence their conformational energy landscape so as to adapt to each other to maximize binding energies and enhance substrate selectivities. Here, we introduce a novel design of cofacial (Zn)bisporphyrin cages based on dynamic imine bonding, which is synthetically simple, but at the same time highly robust and versatile, affording receptors composed of only -hybridized C and N atoms. The high structural rigidity of these cages renders them ideal hosts for ditopic molecules that can fit into the cavity and bind to both metal centers, leading to association constants as high as 10 M in chloroform.

View Article and Find Full Text PDF

The objective of this study was to evaluate the effects of cage size on the natural behavior, serum biochemistry, production performance and hypothalamic transcriptome profiles of laying hens. A total of 360 79-week-old hens were selected and randomly assigned to three groups (with five replicates each) with different cage sizes: large cages (LCs), medium cages (MCs), and small cages (SCs). The stocking density remained consistent across all groups throughout the experimental period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!