Paeoniflorin (PF) is one of the principal components of peony, a plant widely used in traditional Chinese medicine for its anti-inflammatory and immunomodulatory effects. Human β-defensin-2 (hBD-2) is an antimicrobial peptide that acts as the first line of defense against bacterial, viral, and fungal infections. This study aims to determine whether or not PF can regulate the expression of hBD-2 and its possible molecular mechanism in human bronchial epithelial cells (HBECs). Real-time quantitative reverse transcription PCR showed that PF can enhance the mRNA expression level of hBD-2 in a concentration- and time-dependent manner in HBECs. Further studies demonstrated that the mRNA and protein expression levels of hBD-2 were attenuated by the p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580, the extracellular signal-regulated kinase (ERK) inhibitor PD98059, and the nuclear factor kappa B (NF-κB) inhibitor (pyrrolidine dithiocarbamate (PDTC)). The phosphorylation of p38 MAPK, ERK, and c-Jun N-terminal kinase was detected by Western blot analysis, and the NF-κB translocation of 16HBECs after PF treatment was analyzed by immunofluorescence. These results support that PF upregulates hBD-2 expression in HBECs through the p38 MAPK, ERK, and NF-κB signaling pathways. These findings provide a new pharmacological mechanism of PF for the treatment of microbial infections by strengthening epithelial antimicrobial barriers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10753-014-9872-7 | DOI Listing |
Metabolites
November 2024
Healthcare Genetics Laboratory, School of Nursing, Clemson University, Clemson, SC 29634, USA.
: Breast cancer is the most common cause of death in women worldwide and the most commonly diagnosed cancer. Although several therapeutic approaches are widely used against breast cancer, their adverse effects often lead to symptoms severely affecting the quality of life. Alternative methods have been explored to reduce these adverse effects, and nutraceuticals have yielded promising results.
View Article and Find Full Text PDFMar Drugs
November 2024
Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea.
, a salt-tolerant plant, has demonstrated antioxidant effects, the ability to prevent prostate enlargement, antifungal properties, and skin moisturizing benefits. This study aimed to explore the anti-melanogenic potential of the 70% ethanol extract of (TME) along with its ethyl acetate (TME-EA) and water (TME-A) fractions. TME (10-200 µg/mL), TME-EA (1-15 µg/mL), and TME-A (100-1000 µg/mL) were prepared and applied to B16F10 cells with or without α-MSH for 72 h.
View Article and Find Full Text PDFCurr Issues Mol Biol
November 2024
Institute of Biomaterial • Implant, Department of Oral Anatomy, School of Dentistry, Wonkwang University, Iksan 54538, Republic of Korea.
has been used both as a food and in traditional medicine. However, its anti-inflammatory effects in periodontal diseases have not been studied. We examined the anti-inflammatory properties of extract in RAW 264.
View Article and Find Full Text PDFRespir Physiol Neurobiol
December 2024
Department of Emergency Medicine, The Second Hospital of Tianjin Medical University, Tianjin 300211, China. Electronic address:
Background: The primary purpose of this study was to demonstrate the preventive effects of imatinib (IMA) on lipopolysaccharide (LPS)-induced inflammation in a mouse model of acute lung injury (ALI) and human umbilical vascular endothelial cells.
Methods: LPS stimulation for 24h induced ALI and cell inflammation. The pathological results of the lungs were evaluated using the wet/dry weight ratio, pulmonary vascular permeability measurements, and myeloperoxidase immunohistochemistry.
Bioorg Chem
December 2024
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China. Electronic address:
To explore potential anti-inflammatory lead compounds, ten new physalin steroids, including three neophysalins (1, 4, and 9) and seven physalins (2, 3, 5-8, and 10), along with eleven known analogs, were isolated from an ethanol extract of the calyx of Physalis alkekengi. The new structures were rigorously determined through comprehensive HRESIMS, 1D/2D-NMR, and X-ray diffraction analysis. Among these compounds, 1 was identified as a new 1,10-seco-neophysalin, and 2 was identified as a new 11,15-cyclo-9,10-seco-physalin characterized by an aromatic A-ring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!