We report photonic concepts related to injection and sub-wavelength propagation in nanotubes, an unusual but promising geometry for highly integrated photonic devices. Theoretical simulation by the finite domain time-dependent (FDTD) method was first used to determine the features of the direct light injection and sub-wavelength propagation regime within nanotubes. Then, the injection into nanotubes of SU8, a photoresist used for integrated photonics, was successfully achieved by using polymer microlensed fibers with a sub-micronic radius of curvature, as theoretically expected from FDTD simulations. The propagation losses in a single SU8 nanotube were determined by using a comprehensive set-up and a protocol for optical characterization. The attenuation coefficient has been evaluated at 1.25 dB mm(-1) by a cut-back method transposed to such nanostructures. The mechanisms responsible for losses in nanotubes were identified with FDTD theoretical support. Both injection and cut-back methods developed here are compatible with any sub-micronic structures. This work on SU8 nanotubes suggests broader perspectives for future nanophotonics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3nr06716e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!