Upright ambulation is believed to improve quality of life for persons with lower-limb paralysis (LLP). However, ambulatory orthoses for persons with LLP, like reciprocating gait orthoses (RGOs), result in a slow, exhausting gait. Increasing the hip joint stiffness of these devices may improve the efficiency of RGO-assisted gait. The small, diverse population of RGO users makes subject recruitment challenging for clinical investigations. Therefore, we developed a lower-limb paralysis simulator (LLPS) that enabled nondisabled persons to exhibit characteristics of RGO-assisted gait, thereby serving as surrogate models for research. For this study, tests were conducted to determine the effects of increased hip joint stiffness on gait of nondisabled persons walking with the LLPS. A motion capture system, force plates, and spirometer were used to measure the hip flexion, crutch ground reaction forces (GRFs), and oxygen consumption of subjects as they walked with four different hip joint stiffness settings. Increasing the hip joint stiffness decreased hip flexion during ambulation but did not appear to affect the crutch GRFs. Walking speed was observed to initially increase with increases in hip joint stiffness, and then decrease. These findings suggest that increasing hip joint stiffness may increase walking speed for RGO users.

Download full-text PDF

Source
http://dx.doi.org/10.1682/JRRD.2013.01.0013DOI Listing

Publication Analysis

Top Keywords

hip joint
28
joint stiffness
28
increasing hip
12
hip
9
reciprocating gait
8
lower-limb paralysis
8
rgo-assisted gait
8
rgo users
8
nondisabled persons
8
hip flexion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!