Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Premise Of Study: Polyploid plants, when compared with diploids, show similar molecular, morphological, physiological, and ecological tendencies across unrelated groups, but the degree to which these form "rules" of polyploid evolution are unclear. The Glycine (Leguminosae) allopolyploid complex affords the opportunity to test whether polyploidy in similar genetic backgrounds produces similar effects on geographical range or climatic space.
Methods: We used information on locality presence of four closely related Glycine allopolyploid species and their diploid progenitors to build models of the potentially available Australian ranges based on climate using Maxent3.3.3k. Principal coordinate analysis was used to characterize the multidimensional climate space occupied by each species.
Key Results: Each of the four Glycine allopolyploids showed intermediacy in potential geographical space and in ecological space, relative to its diploid progenitors. The four allopolyploids did not have consistently larger ranges than their progenitors, though all four occupied a portion of climate niche space not available to its progenitors. The polyploids also differed in their exploitation of potentially available geographical range. Australian ranges and environmental space did not correlate with greater colonizing ability in these polyploids.
Conclusions: The four Glycine allopolyploids do not show many common range- or climate-related features, other than intermediacy. Thus, despite their similar genetic and evolutionary backgrounds, polyploidy has not produced convergent ecological effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3732/ajb.1300417 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!