Influenza A H1N1 pandemic strain evolution--divergence and the potential for antigenic drift variants.

PLoS One

W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, United States of America.

Published: February 2015

The emergence of a novel A(H1N1) strain in 2009 was the first influenza pandemic of the genomic age, and unprecedented surveillance of the virus provides the opportunity to better understand the evolution of influenza. We examined changes in the nucleotide coding regions and the amino acid sequences of the hemagglutinin (HA), neuraminidase (NA), and nucleoprotein (NP) segments of the A(H1N1)pdm09 strain using publicly available data. We calculated the nucleotide and amino acid hamming distance from the vaccine strain A/California/07/2009 for each sequence. We also estimated Pepitope-a measure of antigenic diversity based on changes in the epitope regions-for each isolate. Finally, we compared our results to A(H3N2) strains collected over the same period. Our analysis found that the mean hamming distance for the HA protein of the A(H1N1)pdm09 strain increased from 3.6 (standard deviation [SD]: 1.3) in 2009 to 11.7 (SD: 1.0) in 2013, while the mean hamming distance in the coding region increased from 7.4 (SD: 2.2) in 2009 to 28.3 (SD: 2.1) in 2013. These trends are broadly similar to the rate of mutation in H3N2 over the same time period. However, in contrast to H3N2 strains, the rate of mutation accumulation has slowed in recent years. Our results are notable because, over the course of the study, mutation rates in H3N2 similar to that seen with A(H1N1)pdm09 led to the emergence of two antigenic drift variants. However, while there has been an H1N1 epidemic in North America this season, evidence to date indicates the vaccine is still effective, suggesting the epidemic is not due to the emergence of an antigenic drift variant. Our results suggest that more research is needed to understand how viral mutations are related to vaccine effectiveness so that future vaccine choices and development can be more predictive.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3974778PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0093632PLOS

Publication Analysis

Top Keywords

antigenic drift
12
hamming distance
12
drift variants
8
amino acid
8
ah1n1pdm09 strain
8
rate mutation
8
emergence antigenic
8
strain
5
influenza h1n1
4
h1n1 pandemic
4

Similar Publications

Introduction: The H9N2 avian influenza virus is widely disseminated in poultry and poses a zoonotic threat, despite vaccination efforts. Mutations at residue 198 of hemagglutinin (HA) are critical for antigenic variation and receptor-binding specificity, but the underlying molecular mechanisms remain unclear. This study explores the molecular mechanisms by which mutations at the HA 198 site affect the antigenicity, receptor specificity, and binding affinity of the H9N2 virus.

View Article and Find Full Text PDF

Background: Seasonal vaccination is the mainstay of human influenza prevention. Licensed influenza vaccines are regularly updated to account for viral mutations and antigenic drift and are standardised for their haemagglutinin content. However, vaccine effectiveness remains suboptimal.

View Article and Find Full Text PDF

Influenza remains a persistent global health challenge, largely due to the virus' continuous antigenic drift and occasional shift, which impede the development of a universal vaccine. To address this, the identification of broadly neutralizing antibodies and their epitopes is crucial. Nanobodies, with their unique characteristics and binding capacity, offer a promising avenue to identify such epitopes.

View Article and Find Full Text PDF

Background: The morbidity and mortality associated with influenza viruses are a significant public health challenge. Annual vaccination against circulating influenza strains reduces hospitalisations and increases survival rates but requires a yearly redesign of vaccines against prevalent subtypes. The complex genetics of influenza viruses with high antigenic drift create an ongoing challenge in vaccine development to address dynamic influenza epidemiology.

View Article and Find Full Text PDF

Influenza and Aging: Clinical Manifestations, Complications, and Treatment Approaches in Older Adults.

Drugs Aging

January 2025

University Hospitals of Cleveland, 11100 Euclid Ave, Mailstop 5083, Cleveland, OH, 44106, USA.

Influenza, a highly contagious respiratory viral illness, poses significant global health risks, particularly affecting older and those with chronic health conditions. Influenza viruses, primarily types A and B, are responsible for seasonal human infections and exhibit a propensity for antigenic drift and shift, contributing to seasonal epidemics and pandemics. The severity of influenza varies, but severe cases often lead to pneumonia, acute respiratory distress syndrome, and multiorgan failure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!