Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pollen is the most common aeroallergen to cause seasonal conjunctivitis. The result of allergen exposure is a strong Th2-mediated response along with conjunctival mast cell degranulation and eosinophilic infiltration. Oleanolic acid (OA) is natural a triterpene that displays strong anti-inflammatory and immunomodulatory properties being an active anti-allergic molecule on hypersensitivity reaction models. However, its effect on inflammatory ocular disorders including conjunctivitis, has not yet been addressed. Hence, using a Ragweed pollen (RWP)-specific allergic conjunctivitis (EAC) mouse model we study here whether OA could modify responses associated to allergic processes. We found that OA treatment restricted mast cell degranulation and infiltration of eosinophils in conjunctival tissue and decreased allergen-specific Igs levels in EAC mice. Th2-type cytokines, secreted phospholipase A2 type-IIA (sPLA2-IIA), and chemokines levels were also significantly diminished in the conjunctiva and serum of OA-treated EAC mice. Moreover, OA treatment also suppressed RWP-specific T-cell proliferation. In vitro studies, on relevant cells of the allergic process, revealed that OA reduced the proliferative and migratory response, as well as the synthesis of proinflammatory mediators on EoL-1 eosinophils and RBL-2H3 mast cells exposed to allergic and/or crucial inflammatory stimuli such as RWP, sPLA2-IIA or eotaxin. Taken together, these findings demonstrate the beneficial activity of OA in ocular allergic processes and may provide a new intervention strategy and potential therapy for allergic diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3974667 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0091282 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!