Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Empathy for the pain experience of others can lead to the activation of pain-related brain areas and can even induce aberrant responses to pain in human observers. Recent evidence shows this high-level emotional and cognitive process also exists in lower animals; however, the mechanisms underlying this phenomenon remain unknown. In the present study we found that, after social interaction with a rat that had received subcutaneous injection of bee venom (BV), only the cagemate observer (CO) but not the noncagemate observer (NCO) showed bilateral mechanical hypersensitivity and an enhanced paw flinch reflex following BV injection. Moreover, neuronal activities labeled by c-Fos immunoreactivity in the spinal dorsal horn of CO rats were also significantly increased relative to the control 1 hour after BV injection. A stress-related response can be excluded because serum corticosterone concentration following social interaction with demonstrator rats in pain was not changed in CO rats relative to NCO and isolated control rats. Anxiety can also be excluded because anxiety-like behaviors could be seen in both the CO and NCO rats tested in the open-field test. Finally, bilateral lesions of the medial prefrontal cortex eliminated the enhancement of the BV-induced paw flinch reflex in CO rats, but bilateral lesions of either the amygdala or the entorhinal cortex failed. Together, we have provided another line of evidence for the existence of familiarity-dependent empathy for pain in rats and have demonstrated that the medial prefrontal cortex plays a critical role in processing the empathy-related enhancement of spinal nociception.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pain.2014.03.019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!