Divalent or multivalent molecules often show enhanced biological activity relative to the simple monomeric units. Here we present enzymatically and chemically prepared dimers of the flavonolignans silybin and 2,3-dehydrosilybin. Their electrochemical behavior was studied by in situ and ex situ square wave voltammetry. The oxidation of monomers and dimers was similar, but adsorption onto the electrode and cell surfaces was different. A 1,1-diphenyl-2-picrylhydrazyl (DPPH) and an inhibition of microsomal lipoperoxidation assay were performed with same trend of results for silybin and 2,3-dehydrosilybin dimers. Silybin dimer showed better activity than the monomer, while on the contrary 2,3-dehydrosilybin dimer presented weaker antioxidant/antilipoperoxidant activity than its monomer. Cytotoxicity was evaluated on human umbilical vein endothelial cells, normal human adult keratinocytes, mouse fibroblasts (BALB/c 3T3) and human liver hepatocellular carcinoma cell line (HepG2). Silybin dimer was more cytotoxic than the parent compound and in the case of 2,3-dehydrosilybin its dimer showed weaker cytotoxicity than the monomer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6271273 | PMC |
http://dx.doi.org/10.3390/molecules19044115 | DOI Listing |
Front Physiol
December 2024
National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Introduction: Adrenergic activation of protein kinase A (PKA) in cardiac muscle targets the sarcolemma, sarcoplasmic reticulum, and contractile apparatus to increase contractile force and heart rate. In the thin filaments of the contractile apparatus, cardiac troponin I (cTnI) Ser22 and Ser23 in the cardiac-specific N-terminal peptide (NcTnI: residues 1 to 32) are the targets for PKA phosphorylation. Phosphorylation causes a 2-3 fold decrease of affinity of cTn for Ca associated with a higher rate of Ca dissociation from cTnC leading to a faster relaxation rate of the cardiac muscle (lusitropy).
View Article and Find Full Text PDFACS Pharmacol Transl Sci
December 2024
School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
Idiopathic pulmonary fibrosis (IPF) represents a grave challenge as it is characterized by high fatality rates and irreversible progression without effective clinical interventions available at present. Previous studies have demonstrated that inhibition of heat shock protein 90 (HSP90) by an N-terminal inhibitor disrupts its interaction with TGFβRII, leading to the instability of TGFβRII, thus blocking the role of transforming growth factor-β1 (TGF-β1), which could potentially ameliorate IPF symptoms. However, given that the broad spectrum of HSP90 N-terminal inhibitors may lead to unanticipated side effects, we hypothesize that C-terminal inhibitors of HSP90 can interfere with TGFβRII while minimizing adverse reactions.
View Article and Find Full Text PDFCell Death Dis
December 2024
Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, China.
Aortic dissection (AD) poses a significant threat to cardiovascular health globally, yet its underlying mechanisms remain elusive. Smooth muscle cells death and phenotypic switching are critically important pathological processes in AD. Currently, no pharmacological therapies have proven effective in managing AD.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Unidad de Investigación de Trastornos de la Alimentación, Facultad de Enfermería, Universidad Católica de Murcia, Campus de Guadalupe, Avda. de Los Jerónimos, s/n, 30107 Murcia, Spain.
Thistle () has been traditionally employed for liver protection. However, we recently identified silibinin, the main bioactive compound of thistle extract, as an in vitro pancreatic lipase inhibitor, which suggested a potential role as an anti-obesity agent. This study aimed to assess, in vivo, the efficacy, safety, and effects of silibinin on human lipase.
View Article and Find Full Text PDFComput Biol Chem
November 2024
Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, Rajasthan 303121, India. Electronic address:
The second most prevalent neurological disease among the elderly is Parkinson's disease, where neuroinflammation plays a significant role in its pathology. Purinergic signaling mediated by P2X7 plays a significant role in neuroinflammation and pyroptotic cell death pathways through mediators like NLRP3, Caspase-1, and Caspase-3, instigating pyroptotic cell death. No synthetic agent advanced in late-stage clinical trials due to their inefficacy and toxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!