AI Article Synopsis

  • Cerebral cavernous malformations (CCMs) are vascular lesions in the central nervous system that can occur sporadically or through inherited mutations in genes KRIT1, CCM2, and PDCD10.
  • Biallelic somatic mutations in CCM lesions support the idea that both inherited and sporadic cases may follow a two-hit mutation mechanism, although the genetic basis for sporadic cases isn't fully established.
  • The study identified novel somatic mutations in sporadic CCM and indicated a shared pathogenic pathway in both inherited and sporadic forms, suggesting potential for similar therapeutic approaches.

Article Abstract

Cerebral cavernous malformations (CCMs) are vascular lesions affecting the central nervous system. CCM occurs either sporadically or in an inherited, autosomal dominant manner. Constitutional (germline) mutations in any of three genes, KRIT1, CCM2 and PDCD10, can cause the inherited form. Analysis of CCM lesions from inherited cases revealed biallelic somatic mutations, indicating that CCM follows a Knudsonian two-hit mutation mechanism. It is still unknown, however, if the sporadic cases of CCM also follow this genetic mechanism. We extracted DNA from 11 surgically excised lesions from sporadic CCM patients, and sequenced the three CCM genes in each specimen using a next-generation sequencing approach. Four sporadic CCM lesion samples (36%) were found to contain novel somatic mutations. Three of the lesions contained a single somatic mutation, and one lesion contained two biallelic somatic mutations. Herein, we also describe evidence of somatic mosaicism in a patient presenting with over 130 CCM lesions localized to one hemisphere of the brain. Finally, in a lesion regrowth sample, we found that the regrown CCM lesion contained the same somatic mutation as the original lesion. Together, these data bolster the idea that all forms of CCM have a genetic underpinning of the two-hit mutation mechanism in the known CCM genes. Recent studies have found aberrant Rho kinase activation in inherited CCM pathogenesis, and we present evidence that this pathway is activated in sporadic CCM patients. These results suggest that all CCM patients, including those with the more common sporadic form, are potentially amenable to the same therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103679PMC
http://dx.doi.org/10.1093/hmg/ddu153DOI Listing

Publication Analysis

Top Keywords

somatic mutations
16
ccm
16
ccm genes
12
sporadic ccm
12
ccm patients
12
cerebral cavernous
8
cavernous malformations
8
ccm pathogenesis
8
mutations three
8
ccm lesions
8

Similar Publications

Purpose: Circulating tumor DNA (ctDNA) analysis is an alternative to tissue biopsy for genotyping in various cancers. We aimed to establish a plasma ctDNA sequencing assay, then evaluate its clinical utility in advanced urothelial cancer (UC).

Materials And Methods: This study included 82 patients with muscle-invasive or metastatic UC.

View Article and Find Full Text PDF

Background: Clonal hematopoiesis of indeterminate potential (CHIP) is the presence of somatic mutations in myeloid and lymphoid malignancy genes in the blood cells of individuals without a hematologic malignancy. Inflammation is hypothesized to be a key mediator in the progression of CHIP to hematologic malignancy and patients with CHIP have a high prevalence of inflammatory diseases. This study aimed to identify the prevalence and characteristics of CHIP in patients with inflammatory bowel disease (IBD).

View Article and Find Full Text PDF

Innovative and easy-to-implement strategies are needed to improve the pathogenicity assessment of rare germline missense variants. Somatic cancer driver mutations identified through large-scale tumor sequencing studies often impact genes that are also associated with rare Mendelian disorders. The use of cancer mutation data to aid in the interpretation of germline missense variants, regardless of whether the gene is associated with a hereditary cancer predisposition syndrome or a non-cancer-related developmental disorder, has not been systematically assessed.

View Article and Find Full Text PDF

Introduction: and mutations are frequently detected in lung adenocarcinoma (LUAD). Tumor mutational signature (TMS) determination is an approach to identify somatic mutational patterns associated with pathogenic factors. In this study, through the analysis of TMS, the underlying pathogenic factors of LUAD with and mutations were traced.

View Article and Find Full Text PDF

Mismatch repair deficiency (MMRd) or microsatellite instability high (MSI-H) is rare in prostate cancer and more frequently observed in cases with ductal histology. MLH1 copy number loss is extremely rare in MMRd tumors. Herein, we describe a case of prostate ductal adenocarcinoma with MLH1 copy number loss, microsatellite instability high and BRCA2 mutation could derive benefit from immunotherapy plus ADT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!