bmnpv-miR-3 facilitates BmNPV infection by modulating the expression of viral P6.9 and other late genes in Bombyx mori.

Insect Biochem Mol Biol

Centre of Excellence for Genetics and Genomics of Silkmoths, Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Tuljaguda Complex, Nampally, Hyderabad 500001, Andhra Pradesh, India. Electronic address:

Published: June 2014

During the last decade, microRNAs (miRNAs) have emerged as fine tuners of gene expression in various biological processes including host-pathogen interactions. Apart from the role of host encoded miRNAs in host-virus interactions, recent studies have also indicated the key role of virus-encoded miRNAs in the regulation of host defense responses. In the present study, we show that bmnpv-miR-3, a Bombyx mori nucleopolyhedrovirus (BmNPV) encoded miRNA, regulates the expression of DNA binding protein (P6.9) and other late genes, vital for the late stage of viral infection in the host, Bombyx mori. We have performed both cell culture and in vivo experiments to establish the role of bmnpv-miR-3 in the infection cycle of BmNPV. Our findings showed that bmnpv-miR-3 expresses during early stage of infection, and negatively regulates the expression of P6.9. There was an upregulation in P6.9 expression upon blocking of bmnpv-miR-3 by Locked Nucleic Acid (LNA), whereas overexpression of bmnpv-miR-3 resulted in a decreased expression of P6.9. Besides, a remarkable enhancement and reduction in the viral loads were observed upon blocking and overexpression of bmnpv-miR-3, respectively. Furthermore, we have also assessed the host immune response using one of the Lepidoptera-specific antimicrobial proteins, Gloverin-1 upon blocking and overexpression of bmnpv-miR-3, which correlated viral load with the host immune response. All these results together; clearly imply that bmnpv-miR-3-mediated controlled regulation of BmNPV late genes in the early stage of infection helps BmNPV to escape the early immune response from the host.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ibmb.2014.03.008DOI Listing

Publication Analysis

Top Keywords

late genes
12
bombyx mori
12
overexpression bmnpv-mir-3
12
immune response
12
bmnpv-mir-3
8
p69 late
8
regulates expression
8
early stage
8
stage infection
8
expression p69
8

Similar Publications

Transcriptomic analysis reveals potential roles of polyamine and proline metabolism in waterlogged peach roots inoculated with Funneliformis mosseae and Serendipita indica.

Tree Physiol

January 2025

Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China.

Root-associated endophytic fungi can create symbiotic relationships with trees to enhance stress tolerance, but the underlying mechanisms, especially with regard to waterlogging tolerance, remain unclear. This study aimed to elucidate the effects of Funneliformis mosseae and Serendipita indica on the growth, root cross-section structure, and root transcriptional responses of peach under waterlogging stress, with a focus on polyamine and proline metabolism. Genes and transcription factors associated with secondary cell wall biosynthesis were selected, and their expression profiles were analyzed.

View Article and Find Full Text PDF

Molecular Traits of Rapid Alkalinization Factor Family and Functional Analysis of SlRALF2 in Tomato Resistance to .

J Agric Food Chem

January 2025

MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.

Late blight, caused by (), poses a significant threat to tomato yield and quality. Traditional disease control strategies rely heavily on frequent applications of chemical pesticides, leading to environmental pollution and the emergence of pesticide-resistant pathogens. This highlights the urgent need for environmentally friendly plant disease control technologies.

View Article and Find Full Text PDF

Influenza A virus NS2 protein acts on vRNA-resident polymerase to drive the transcription to replication switch.

Nucleic Acids Res

January 2025

CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.

The heterotrimeric RNA-dependent RNA polymerase (RdRp) of influenza A virus catalyzes viral RNA transcription (vRNA→mRNA) and replication (vRNA→cRNA→vRNA) by adopting different conformations. A switch from transcription to replication occurs at a relatively late stage of infection. We recently reported that the viral NS2 protein, expressed at later stages from a spliced transcript of the NS segment messenger RNA (mRNA), inhibits transcription, promotes replication and plays a key role in the transcription-to-replication switch.

View Article and Find Full Text PDF

Retrotransposon Gag-like (RTL) 8A, 8B and 8C are eutherian-specific genes derived from a certain retrovirus. They cluster as a triplet of genes on the X chromosome, but their function remains unknown. Here, we demonstrate that and play important roles in the brain: their double knockout (DKO) mice not only exhibit reduced social responses and increased apathy-like behaviour, but also become obese from young adulthood, similar to patients with late Prader-Willi syndrome (PWS), a neurodevelopmental genomic imprinting disorder.

View Article and Find Full Text PDF

Regulation of trophectoderm morphogenesis by small GTPase RHOA through HIPPO signaling-dependent and -independent mechanisms in mouse preimplantation development.

Differentiation

January 2025

Yanagimachi Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, 96813, USA. Electronic address:

The trophectoderm (TE) is the first tissue to differentiate during the preimplantation development of the mammalian embryo. It forms the outer layer of the blastocyst and is responsible for generating the blastocoel, a fluid-filled cavity whose expansion is essential for successful hatching and implantation. Here, we investigated the role of the small GTPase RHOA in the morphogenesis of the TE, particularly its relationship with HIPPO signaling, using mouse embryos as a model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!