Toxic ratio TR is a valuable tool in the discrimination of excess toxicity from baseline effect. Although some authors realized that internal effect concentration or critical body residual (CBR) calculated from bioconcentration factor (BCF) should be used in the TR, the effect of BCF on the discrimination of excess toxicity from baseline effect has not been investigated. In this paper, 951 acute toxicity data to fish (LC50) and 1088 BCFs were used to investigate the relationship between TR and BCF. The results showed that some compounds identified as reactive compounds exhibit excess toxicity, but some do not. BCF is closely related to TR and can significantly affect the TR value. The real excess toxicity which is used to identify reactive chemicals from baseline should be based on the toxic ratio of internal effect concentrations, rather than on the ratio of external effect concentrations, TR. The use of LC50 alone to determine TR can result in errors in TR because toxicokinetics (as estimated by the BCF) are ignored. The foundation in the discrimination of excess toxicity from baseline effect is based on the linear relationship between log BCF and hydrophobicity expressed as log KOW. However, log BCF is not linearly related with log KOW for all the compounds. The BCFs with log KOW >7 or <0 are either overestimated or underestimated by the linear baseline BCF model. Parallel lines are observed from calculated log CBR values for baseline and less inert compounds. The log BCF values overestimated or underestimated by log KOW from the baseline BCF model can result in mis-prediction and mis-classification among baseline, less inert and reactive compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2014.03.040 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China. Electronic address:
Soil pollution by microplastics (MPs) and cadmium (Cd) poses significant threats to agricultural production, yet their combined toxicity and underlying mechanisms remain poorly understood. Here, we examined the effects of three types of MPs-polyethylene (PE), polyvinyl chloride (PVC) and polypropylene (PP)-with particle sizes of 150 μm and 10 μm, in combination with Cd stress (5 mg/kg) on tomato (Solanum lycopersicum L.) growth.
View Article and Find Full Text PDFJ Complement Integr Med
January 2025
Department of Basic Medical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.
Background: Excessive fluoride exposure leads to increased oxidative stress and lipid peroxidation, causing harmful effects on the metabolic organs in the human body. Betanin, a pigment obtained from beetroot, is seen to have powerful anti-inflammatory and antioxidant. The study was conducted to determine the role of betanin in fluoride induced hepato-renal toxicity in Wistar rats.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Stanford University, Stanford, CA, USA.
Background: Recent studies suggest that iron and neuroinflammation are key components of Alzheimer's Disease (AD) pathology. Ferrous Fe can cause oxidative stress and cellular toxicity, but it is unknown to what extent Fe is elevated in AD, in particular with the hippocampus. To answer this question, we quantified iron oxidation state in frozen human brain hippocampi.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Vanderbilt University Medical Center, Nashville, TN, USA.
Background: Manganese (Mn) is an essential metal that serves as a cofactor for metalloenzymes important in moderating the glutamate/glutamine cycle and other oxidative stress pathways. Typically, Mn is acquired through the diet, however, Mn overexposure can arise through drinking inadequately treated well water or inhalation of Mn-containing industrial byproducts. Mn toxicity disrupts dopaminergic neurotransmission resulting in a Parkinsonian disorder referred to as manganism.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indiana University, Bloomington, IN, USA.
Background: The roles of Aβ in the pathogenesis of Alzheimer 's disease (AD) include disruption of synaptic communication/function and synaptic plasticity mechanisms thought to underlie learning and memory. Exactly how these abnormal processes arise is incompletely understood, but evidence suggests that dysregulation of intracellular Ca levels is involved in alterations of neuronal excitability, synaptic remodeling, and neurodegeneration in AD. Our lab has focused on the potential involvement of voltage-gated potassium channels (VGKCs) in these processes, particularly Kv1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!