PCR-based assay to detect sheeppox virus in ocular, nasal, and rectal swabs from infected Moroccan sheep.

J Virol Methods

Laboratory of Virology, Microbiology and Quality/Ecotoxicology and Biodiversity, Hassan II University Mohammedia-Casablanca, Faculty of Science and Technology Mohammedia, BP 146 Mohammedia 20650, Morocco. Electronic address:

Published: August 2014

Sheeppox is now enzootic in Morocco. The development of a reliable method for rapid diagnosis of the disease is a central part of any control strategy. The aim of this study is to determine the diagnostic value of a variety of clinical samples such as ovine nasal, ocular or rectal swabs for the detection of sheeppox virus (SPPV) by qualitative conventional polymerase chain reaction (PCR), using a single pair of primers targeting the inverted terminal repeats of the SPPV InS-1 strain, a virulent field isolate. Swab and blood samples were collected from forty animals naturally infected with SPPV who had clinical signs of sheeppox. All animals tested PCR-positive for SPPV. Positive results were obtained infrequently with blood samples, whereas swab samples from at least two sites (nasal, ocular, rectal) were positive per evaluated animal. These results indicate that swab samples are suitable for quantitative molecular SPPV diagnosis. PCR product sequences obtained from all types of sheep samples proved to be identical to the corresponding regions of sheeppox virus strain Romania 65.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jviromet.2014.03.019DOI Listing

Publication Analysis

Top Keywords

sheeppox virus
12
rectal swabs
8
nasal ocular
8
ocular rectal
8
blood samples
8
swab samples
8
samples
6
sheeppox
5
sppv
5
pcr-based assay
4

Similar Publications

Sheeppox and Goatpox are highly contagious transboundary viral diseases of sheep and goats caused by Capripoxvirus, respectively. This study describes the development of indirect ELISA and its serodiagnostic potential as an alternative to the gold standard serum neutralization test (SNT). The homologue of vaccinia virus, ORF 117 (A27L) gene of the Romanian Fenner (RF) strain of Sheeppox virus (SPPV) was used for producing the full-length recombinant A27L (rA27L) protein (∼22 kDa) in a prokaryotic expression system.

View Article and Find Full Text PDF

Lumpy skin disease (LSD) is an emerging, highly contagious transboundary disease of bovines caused by the Lumpy skin disease virus (LSDV), responsible for substantial economic losses to the dairy, meat, and leather industries in Pakistan as well as various countries around the world. Epidemiological information on LSD is scarce in Punjab, Pakistan. Therefore, a molecular epidemiological study was conducted in two agro-ecologically diverse districts (Bhakkar and Jhang) of Punjab, Pakistan.

View Article and Find Full Text PDF

Enhancing lumpy skin disease control: Effective competitive and indirect ELISAs for serological surveillance.

J Virol Methods

January 2025

Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), via Bianchi 9, Brescia 24125, Italy. Electronic address:

Lumpy skin disease (LSD), caused by the LSD virus (LSDV) from the Capripoxvirus genus, affects cattle, water buffalo, and wild bovines, leading to significant economic losses. Characterised by fever, skin nodules, and mucosal lesions, LSD raises global concerns due to vector-borne transmission. The World Organisation for Animal Health (WOAH) classifies LSD as a notifiable disease, emphasising the need for rapid diagnostic methods for timely disease confirmation and control.

View Article and Find Full Text PDF

The Safety and Efficacy of New DIVA Inactivated Vaccines Against Lumpy Skin Disease in Calves.

Vaccines (Basel)

November 2024

Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", 64100 Teramo, Italy.

Lumpy skin disease virus ( family- genus) is the aetiological agent of LSD, a disease primarily transmitted by hematophagous biting, affecting principally cattle. Currently, only live attenuated vaccines are commercially available, but their use is limited to endemic areas. There is a need for safer vaccines, especially in LSD-free countries.

View Article and Find Full Text PDF

Promising antiviral inhibitors against lumpy skin disease: A vetinformatics approach.

Open Vet J

November 2024

Department of Biotechnology, Molecular Informatics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, India.

Background: Lumpy skin disease (LSD) is a transboundary virus disease that mostly affects cattle. It has recently been reported all over the world, which highlights the need for efficient control methods. LSD poses serious economic dangers worldwide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!