Sources of dentin-pulp regeneration signals and their modulation by the local microenvironment.

J Endod

Aix Marseille Université, Centre National de la Recherche Scientifique, Institut des Sciences du Movement Unité Mixte de Recherche 7287, Marseille, France. Electronic address:

Published: April 2014

AI Article Synopsis

  • Dentin pulp tissue has a strong capacity for regeneration, mainly due to progenitor cells and various regeneration signals.
  • These signals can be released from carious dentin and pulp cells after injuries, facilitating the healing process, including the formation of new dentin and blood vessels.
  • The body's complement system is activated by various injuries to the dentin pulp, producing fragments like C5a that help recruit progenitor cells for regeneration.

Article Abstract

Many aspects of dentin pulp tissue regeneration have been investigated, and it has been shown that dentin pulp has a high regeneration capacity. This seems to be because of the presence of progenitor cells and inductive regeneration signals from different origins. These signals can be liberated after the acidic dissolution of carious dentin as well as from pulp fibroblasts and endothelial cells in cases of traumatic injury. Thus, both carious lesions and pulp cells provide the required mediators for complete dentin-pulp regeneration including reparative dentin secretion, angiogenesis, and innervation. Additionally, all dentin pulp insults including carious "infection," traumatic injuries, application of restorative materials on the injured dentin pulp, and subsequent apoptosis are known activators of the complement system. This activation leads to the production of several biologically active fragments responsible for the vascular modifications and the attraction of immune cells to the inflammatory/injury site. Among these, C5a is involved in the recruitment of pulp progenitor cells, which express the C5a receptor. Thus, in addition to dentin and pulp cells, plasma should be considered as an additional source of regeneration signals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joen.2014.01.012DOI Listing

Publication Analysis

Top Keywords

dentin pulp
20
regeneration signals
12
dentin-pulp regeneration
8
pulp
8
progenitor cells
8
pulp cells
8
dentin
7
regeneration
6
cells
6
sources dentin-pulp
4

Similar Publications

Pulp chamber and root canal obliteration (PCO/RCO) presents a challenge for clinicians when nonsurgical endodontic treatment is indicated. Guided endodontics (GE) aims to precisely locate the root canal (RC) system while preserving as much pericervical dentin as possible. GE involves integrating cone-beam computed tomography (CBCT) of the affected tooth with a digital impression of the maxillary/mandibular arch, allowing for careful planning of the drilling path to the RC system through a three-dimensional (3D) static guide.

View Article and Find Full Text PDF

Introduction: Regenerative endodontic procedures (REPs) aim to replace damaged dental structures and regenerate the dentin-pulp complex. Initially focused on teeth with incomplete root formation, recent research shows promise for necrotic teeth with complete root formation.

Methodology: This review, following PRISMA guidelines and registered in PROSPERO, included clinical studies on regenerative endodontic therapy in necrotic human teeth with complete root formation.

View Article and Find Full Text PDF

The preservation of the original configurations of root canals during endodontic preparation is crucial for treatment success. Nickel-titanium (NiTi) rotary systems have been refined to optimize canal shaping while minimizing iatrogenic errors. This study aimed to evaluate and compare the shaping efficacy of the novel R-Motion (RM) and the established WaveOne Gold (WG) systems using micro-computed tomography (micro-CT).

View Article and Find Full Text PDF

Objectives: To evaluate the color change and trans-amelodentinal cytotoxicity of a 22% carbamide peroxide (CP) bleaching gel containing different concentration of manganese oxide (MnO).

Material And Methods: Enamel/dentin discs adapted to artificial pulp chambers were distributed according to treatments: CN-No treatment; CP22%-22%CP; CP22 + 2MnO-22%CP + 2 mg/mLMnO; CP22% + 6MnO-22%CP + 6 mg/mLMnO; CP22% + 10MnO-22%CP + 10 mg/mLMnO applied for 2 h for 15 days. Color change-CC (ΔE and ΔWI) (n = 8) was determined at 5, 10, and 15-day periods (ANOVA/Sidak).

View Article and Find Full Text PDF

Objective: This study aimed to investigate and compare the histological response of rabbit dental pulp after direct pulp capping with 3 different materials: mineral trioxide aggregate (MTA), nanoparticles of fluorapatite (Nano-FA), and nanoparticles of hydroxyapatite (Nano-HA) after 4 and 6-week time intervals.

Material And Methods: A total of 72 upper and lower incisor teeth from 18 rabbits were randomly categorized into 3 groups)24 incisors from six rabbits each. MTA Group: teeth were capped with MTA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!