We demonstrate the direct photothermal probing and mapping of single plasmonic nanostructures via the temperature-induced detuning of nanomechanical string resonators. Single Au nanoslits and nanorods are illuminated with a partially polarized focused laser beam (λ = 633 nm) with irradiances in the range of 0.26-38 μW/μm(2). Photothermal heating maps with a resolution of ∼375 nm are obtained by scanning the laser over the nanostructures. Based on the string sensitivities, absorption efficiencies of 2.3 ± 0.3 and 1.1 ± 0.7 are extracted for a single nanoslit (53 nm × 1 μm) and nanorod (75 nm × 185 nm). Our results show that nanomechanical resonators are a unique and robust analysis tool for the low-power investigation of thermoplasmonic effects in plasmonic hot spots.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl4046679DOI Listing

Publication Analysis

Top Keywords

photothermal probing
8
single plasmonic
8
plasmonic nanostructures
8
nanomechanical string
8
string resonators
8
low-power photothermal
4
single
4
probing single
4
nanostructures nanomechanical
4
resonators demonstrate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!