Nowadays, many self-healing strategies are available for recovering mechanical damage of bulk polymeric materials. The recovery of surface-dependent functionalities on polymer films is, however, equally important and has been less investigated. In this work we study the ability of low surface energy cross-linked poly(ester urethane) networks containing perfluorinated dangling chains to self-replenish their surface, after being submitted to repeated surface damage. For this purpose we used a combined experimental-simulation approach. Experimentally, the cross-linked films were intentionally damaged by cryo-microtoming to remove top layers and create new surfaces which were characterized by water Contact Angle measurements and X-Ray Photoelectron Spectroscopy. The same systems were simultaneously represented by a Dissipative Particles Dynamics simulation method, where the damage was modeled by removing the top film layers in the simulation box and replacing it by new "air" beads. The influence of different experimental parameters, such as the concentration of the low surface energy component and the molecular mobility span of the dangling chains, on the surface recovery is discussed. The combined approach reveals important details of the self-replenishing ability of damaged polymer films such as the occurrence of multiple-healing events, the self-replenishing efficiency, and the minimum "healing agent" concentration for a maximum recovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4868989 | DOI Listing |
Heliyon
January 2025
Institute of Energy Engineering, Dhaka University of Engineering & Technology, Gazipur, Bangladesh.
This study investigates the optimization of cutting conditions for machining titanium alloy (Ti-6Al-4V) using Response Surface Methodology (RSM), with the goal of minimizing tool-chip interface temperature and surface roughness. The research focuses on key cutting parameters to investigate the most effective combinations for enhancing surface finish and reducing thermal impact during machining. The present study deals with the dry turning of Ti-6Al-4V alloy with carbide alloy inserts in a way to utilize the Analysis of Variance (ANOVA) to develop predictive models for minimum surface roughness and optimum temperature.
View Article and Find Full Text PDFAnn Thorac Surg Short Rep
September 2024
Department of General Thoracic Surgery, Osaka International Cancer Institute, Osaka, Japan.
Background: The significance of pulmonary artery (PA) diameter in patients with non-small cell lung cancer (NSCLC) and chronic obstructive pulmonary disease (COPD) who undergo pulmonary resection has not been elucidated.
Methods: Data of 357 patients with NSCLC and COPD who underwent pulmonary resection were retrospectively reviewed. The main PA diameter, determined by preoperative computed tomography, relative to the body surface area (PBR), was used as an index of PA dilatation, and patients were divided into 2 groups using median values.
Chem Commun (Camb)
January 2025
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
Photodetectors based on lead halide perovskites often show excellent performance but poor stability. Herein, we demonstrate a photodetector based on MAPbBr single crystals passivated with an ultrathin layer of PbSO, which shows superior detectivity and on/off ratios compared to the control device due to the combined effect of lower surface traps, reduced recombination and low dark current. In addition, the device retained ∼56% of its initial * with an impressive on/off ratio of ∼801 after one year compared to ∼22% of * and an on/off ratio of ∼6 of the control device.
View Article and Find Full Text PDFACS Nano
January 2025
Center of Free Electron Laser & High Magnetic Field, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
Recently, two-dimensional (2D) van der Waals (vdW) magnetic materials have emerged as a promising platform for studying exchange bias (EB) phenomena due to their atomically flat surfaces and highly versatile stacking configurations. Although complex spin configurations between 2D vdW interfaces introduce challenges in understanding their underlying mechanisms, they can offer more possibilities in realizing effective manipulations. In this study, we present a spin-orthogonal arranged 2D FeGaTe (FGaT)/CrSBr vdW heterostructure, realizing the EB effect with the bias field as large as 1730 Oe at 2 K.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China.
Nanomaterials possess unique size characteristics, enabling them to cross tissue gaps, penetrate the blood-brain barrier and endothelial cells, and release drugs at the cellular level. Additionally, the surface of nanomaterials is readily functionalized, endowing them with good biocompatibility, low biotoxicity, and specific targeting. All these advantages render nanomaterials broad application prospects in tumor therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!