Velocity map imaging of the photofragments arising from two-photon photoexcitation of molecular iodine in the energy range 73 500-74 500 cm(-1) covering the bands of high-lying gerade Rydberg states [(2)Π1/2]c6d;0g (+) and [(2)Π1/2]c6d;2g has been applied. The ion signal was dominated by the atomic fragment ion I(+). Up to 5 dissociation channels yielding I(+) ions with different kinetic energies were observed when the I2 molecule was excited within discrete peaks of Rydberg states and their satellites in this region. One of these channels gives rise to images of I(+) and I(-) ions with equal kinetic energy indicating predissociation of I2 via ion-pair states. The contribution of this channel was up to about 50% of the total I(+) signal. The four other channels correspond to predissociation via lower lying Rydberg states giving rise to excited iodine atoms providing I(+) ions by subsequent one-photon ionization by the same laser pulse. The ratio of these channels varied from peak to peak in the spectrum but their total ionic signal was always much higher than the signal of (2 + 1) resonance enhanced multi-photon ionization of I2, which was previously considered to be the origin of ionic signal in this spectral range. The first-tier E0g (+) and D(')2g ion-pair states are concluded to be responsible for predissociation of Rydberg states [(2)Π1/2]c6d;0g (+) and [(2)Π1/2]c6d;2g, respectively. Further predissociation of these ion-pair states via lower lying Rydberg states gives rise to excited I(5s(2)5p(4)6s(1)) atoms responsible for major part of ion signal. The isotropic angular distribution of the photofragment recoil directions observed for all channels indicates that the studied Rydberg states are long-lived compared with the rotational period of the I2 molecule.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4869205 | DOI Listing |
J Phys Chem A
January 2025
Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
This study investigates the motion of an electron in a Coulomb potential driven by an intense linearly polarized XUV laser pulse analyzed using Gordon-Volkov wave functions. The wave function is decomposed into spherical partial waves to model the scattered electron wave packet after the recollision with a proton. This interaction triggers high harmonic generation, producing coherent X-ray pulses with frequencies that are integer multiples of the XUV field.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics and Astronomy, University of California, Riverside, CA, USA.
The floating phase, a critical incommensurate phase, has been theoretically predicted as a potential intermediate phase between crystalline ordered and disordered phases. In this study, we investigate the different quantum phases that arise in ladder arrays comprising up to 92 neutral-atom qubits and experimentally observe the emergence of the quantum floating phase. We analyze the site-resolved Rydberg state densities and the distribution of state occurrences.
View Article and Find Full Text PDFWe study resonance redistribution mechanisms inside a hot vapor cell. This is achieved by pumping cesium atoms on the 6S→6P resonance and subsequently probing the velocity distribution of the 6P population by a linear absorption experiment on the 6P→16S or 6P→15D transitions at 514 nm and 512 nm, respectively. We demonstrate that despite the existence of thermalization processes, traces of the initial velocity selection, imposed by the pump, survive in hyperfine levels of the intermediate (6P) state.
View Article and Find Full Text PDFAtoms in Rydberg states are an important building block for emerging quantum technologies. While excitation to Rydberg orbitals is typically achieved in more than tens of nanoseconds, the physical limit is in fact much faster, at the ten picoseconds level. Here, we tackle such ultrafast Rydberg excitation of a rubidium atom by designing a dedicated pulsed laser system generating 480 nm pulses of 10 ps duration.
View Article and Find Full Text PDFJ Chem Phys
January 2025
School of Chemistry, University of St Andrews, North Haugh, Fife, St Andrews KY16 9ST, United Kingdom.
Two synchrotron-based studies on 4H-pyran-4-thione, photoelectron spectroscopy and vacuum ultraviolet (VUV) absorption spectra were performed. A highly resolved structure was observed in the photoelectron spectrum (PES), in contrast to an earlier PES study, where little structure was observed. The sequence of ionic states was determined using configuration interaction and coupled cluster methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!