Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We quantify the relationship between the dynamics of a time-discrete dynamical system, the tent map T and its iterations T(m), and the induced dynamics at a symbolical level in information theoretical terms. The symbol dynamics, given by a binary string s of length m, is obtained by choosing a partition point [Formula: see text] and lumping together the points [Formula: see text] s.t. T(i)(x) concurs with the i - 1th digit of s-i.e., we apply a so called threshold crossing technique. Interpreting the original dynamics and the symbolic one as different levels, this allows us to quantitatively evaluate and compare various closure measures that have been proposed for identifying emergent macro-levels of a dynamical system. In particular, we can see how these measures depend on the choice of the partition point α. As main benefit of this new information theoretical approach, we get all Markov partitions with full support of the time-discrete dynamical system induced by the tent map. Furthermore, we could derive an example of a Markovian symbol dynamics whose underlying partition is not Markovian at all, and even a whole hierarchy of Markovian symbol dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4869075 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!