Microencapsulation of liquid and solid substances by reactive polymers.

J Microencapsul

Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, Lviv , Ukraine.

Published: February 2015

This study is devoted to the development of techniques for the formation of polymeric microcapsules (MC) with either liquid or solid core and with the polymer shell containing diverse functional groups on the basis of new reactive functional copolymers (FC). Two approaches to the formation of MC containing FC shell that included the stages of "oil-in-water" or "water-in-oil" dispersion preparation followed by slow extraction of solvents from dispersed phase by dispersive media were examined. FC with the same structure was successfully applied for both "oil-in-water" and "water-in-oil" systems. Spherical MC with the liquid hydrocarbon core demonstrated essential increase in their volume after heating at the temperature exceeding a boiling point of hydrocarbon encapsulated. Presence of reactive groups in the MC shell opens up new opportunity for further tuning the MC properties via their interaction with proper compounds, particularly via graft-polymerisation of diverse vinyl monomers initiated from the MC surface.

Download full-text PDF

Source
http://dx.doi.org/10.3109/02652048.2013.863397DOI Listing

Publication Analysis

Top Keywords

liquid solid
8
"oil-in-water" "water-in-oil"
8
microencapsulation liquid
4
solid substances
4
substances reactive
4
reactive polymers
4
polymers study
4
study devoted
4
devoted development
4
development techniques
4

Similar Publications

Liquid slide electrification: advances and open questions.

Soft Matter

January 2025

Institute for Photovoltaics, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany.

This review is about drops of a liquid with high dielectric permittivity that slide over a solid surface with high electrical resistivity. A typical situation is a water drop sliding down a tilted hydrophobic plate. It has been realized recently that such drops spontaneously acquire a charge.

View Article and Find Full Text PDF

Synergistic binding ability of electrostatic tweezers and femtosecond laser-structured slippery surfaces enabling unusual droplet manipulation applications.

Lab Chip

January 2025

CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China.

We propose a novel contactless droplet manipulation strategy that combines electrostatic tweezers (ESTs) with lubricated slippery surfaces. Electrostatic induction causes the droplet to experience an electrostatic force, allowing it to move with the horizontal shift of the EST. Because both the EST and the slippery operating platform prepared by a femtosecond laser exhibit a strong binding effect on droplets, the EST droplet manipulation features significant flexibility, high precision, and can work under various operating conditions.

View Article and Find Full Text PDF

Understanding the interaction between nanomaterials and cellular structures is crucial for nanoparticle applications in biomedicine. We have identified a subtype of stress granules, called nanomaterial-provoked stress granules (NSGs), induced by gold nanorods (AuNRs). These NSGs differ from traditional SGs in their physical properties and biological functions.

View Article and Find Full Text PDF

Smart Directional Liquid Manipulation on Curvature-Ratchet Surfaces.

ACS Nano

January 2025

Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.

Structured surfaces leverage interfacial energy for directional liquid manipulation without external power, showing tremendous potential in microfluidics, green energy and biomedical applications. While the interplay of interfacial energy between solid surfaces and liquids is crucial for liquid manipulation, a systematic understanding of how the balance in liquid-solid interfacial energy affects liquid behaviors remains lacking. Here, using the curvature-ratchet surface as a generic example, we reveal the complex directional liquid dynamics inherent in the subtle regulation of liquid-solid interfacial energy.

View Article and Find Full Text PDF

The growth and integration of position-controlled, morphology-programmable silicon nanowires (SiNWs), directly upon low-cost polymer substrates instead of postgrowth transferring, is attractive for developing advanced flexible sensors and logics. In this work, a low temperature growth of SiNWs at only 200 °C has been demonstrated, for the first time, upon flexible polyimide (PI) films, via a planar solid-liquid-solid (IPSLS) growth mechanism. The SiNWs with diameter of ∼146 nm can be grown into precise locations on PI as orderly array and with preferred elastic geometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!