The calcium carbonate (CaCO3) cores being templates for model proteins encapsulation were obtained for developing oral drug delivery systems. The influence of the characteristics of the core formation (the time, the temperature, the stirring intensity, the ultrasound treatment and drying conditions) on the size and morphology of the carbonate cores was studied. The core size was shown to decrease with increasing the stirring time and stirring intensity. Statistical analysis of the scanning electron microscopy images of the carbonate cores allowed finding a correlation between their mean diameter and the parameters of the core formation. The regularities of proteins loading into porous CaCO3 cores were determined, and different loading methods were compared quantitatively. The co-precipitation method gives cores with the proteins load about five times as much as the adsorption method. The influence of protein properties and the ionic environment of protein molecules on the loading parameters were shown.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/02652048.2013.858788 | DOI Listing |
Nanomaterials (Basel)
December 2024
Material Science, BASF SE, RGA/BM-B007, Carl-Bosch-Str. 38, D-67056 Ludwigshafen, Germany.
The controlled formation and stabilization of nanoparticles is of fundamental relevance for materials science and key to many modern technologies. Common synthetic strategies to arrest growth at small sizes and prevent undesired particle agglomeration often rely on the use of organic additives and require non-aqueous media and/or high temperatures, all of which appear critical with respect to production costs, safety, and sustainability. In the present work, we demonstrate a simple one-pot process in water under ambient conditions that can produce particles of various transition metal carbonates and sulfides with sizes of only a few nanometers embedded in a silica shell, similar to particles derived from more elaborate synthesis routes, like the sol-gel process.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Laboratory for Chemistry and Life Sciences, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8501, Japan.
Nanostructured Pt-based catalysts have attracted considerable attention for fuel-cell applications. This study introduces a novel one-pot and low-temperature polyol approach for synthesizing support-free, connected nanoparticles with non-Pt metal cores and Pt shells. Unlike conventional heat treatment methods, the developed support-free and Fe-free connected Pd@Pt (Pd@Pt) nanoparticle catalyst possesses a stable nanonetwork structure with a high surface area.
View Article and Find Full Text PDFProstate
December 2024
Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China.
Background: Targeted and systematic transperineal biopsy of lesions guided by magnetic resonance imaging (MRI) and transrectal ultrasonography (TRUS) fusion technique may optimize the biopsy procedure and enhance the detection of prostate cancer. We described the transperineal biopsy guided by an automatic MRI-TRUS fusion technique, and evaluated the accuracy and feasibility of this method in a prospective single-center study.
Methods: The proposed method focuses on automating the delineation of prostate contours in both the MRI and TRUS images, the registration and fusion of MRI and TRUS images, the generation and visualiztion of the systematic biopsy cores in their corresponding locations within the 2D and the 3D views, as well as the computation and visualiztion of needle trajectories from preoperative planning to intraoperative navigation.
ACS Omega
December 2024
State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China.
Hot dry rock (HDR) geothermal is a sustainable and clean energy source. However, its development progress is hindered by creating seepage channels in deep reservoirs with low porosity and permeability. Traditional hydraulic fracturing techniques are ineffective for enhancing the permeability of these high-strength reservoirs.
View Article and Find Full Text PDFACS Omega
December 2024
Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia.
Wetting characteristics of a hydrocarbon reservoir are generally quantified for cost-effective field development. The wetting process of rock by oil is a complex process involving reactions among compounds (rock, oil, and brine), the impact of environmental conditions (temperature, pressure, etc.), and treatment history (coring, transportation, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!