Cotton (Gossypium hirsutum) was raised at different salinity levels (0, 0.15% and 0.30%) by irrigating with fresh- or sea-water. The effects of fertilization (N, NK, NP and NPK) on plant growth, nitrogen (N) uptake and N use efficiency were studied. The results showed that salinity and fertilization both affected the biomass, agronomic N use efficiency, N bioavailability and nitrogen accumulation of plants, and significant interaction was observed between the two factors. Fertilization could improve N use efficiency and nitrogen accumulation of plants under salinity stress, and significantly promoted the cotton yield. Among the fertilization treatments, N combined with P and K had the best effect. The benefit of fertilization was better under low salinity (0.15%) than under moderate salinity (0.3%).

Download full-text PDF

Source

Publication Analysis

Top Keywords

growth nitrogen
8
nitrogen accumulation
8
accumulation plants
8
salinity
6
fertilization
5
[effects fertilization
4
fertilization cotton
4
cotton growth
4
nitrogen
4
efficiency
4

Similar Publications

One-Pot lignin bioconversion to polyhydroxyalkanoates based on hierarchical utilization of heterogeneous compounds.

Bioresour Technol

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, S117585, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), S138602, Singapore. Electronic address:

Pseudomonas putida degraded 35 % of compounds in alkali-pretreated lignin liquor under nitrogen-replete conditions but with low polyhydroxyalkanoates (PHA) production, while limiting nitrogen supplement improved PHA content (PHA/dry cell weight) to 43 % at the expense of decreased lignin degradation of 22 %. Increase of initial cell biomass (0.1--1.

View Article and Find Full Text PDF

Isotopic variability of the invasive blue crab Callinectes sapidus in the Gulf of Cadiz: Impacts and implications for coastal ecosystem management.

J Environ Manage

January 2025

Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avda. República Saharaui, 2, Puerto Real, Cadiz, 11510, Spain; Associate Research Unit "Blue Growth", Spanish National Research Council (CSIC) - Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Cadiz, Spain. Electronic address:

The variability in trophic position and carbon isotopic signatures can provide information about their dietary flexibility and its ability to adapt to changing environmental conditions. The impact of the invasive blue crab Callinectes sapidus was assessed by estimating its trophic position and isotopic niche using stable isotopes (δ³C, δ⁵N, δ³⁴S) across different invaded Atlantic coastal areas. This study, the first of its kind in the eastern Atlantic range, reveals the crab's omnivorous behavior with a wide trophic position (TP = 2-4), consistent with findings from its native range.

View Article and Find Full Text PDF

Overgrazing is the primary human-induced cause of soil degradation in the Caatinga biome, intensely threatening lands vulnerable to desertification. Grazing exclusion, a simple and cost-effective practice, could restore soils' ecological functions. However, comprehensive insights into the effects of overgrazing and grazing exclusion on Caatinga soils' multifunctionality are lacking.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how adding nitrogen fertilizers affects the remobilization of cadmium in rice fields, highlighting increased cadmium levels in rice due to ammonia nitrogen (NH-N) compared to nitrogen (NO-N).
  • Organic acids secreted by rice roots, particularly under NH-N treatment, were found to play a significant role in increasing soluble cadmium content and impacting microbial community functions.
  • The research suggests a complex interaction between nutrient application, cadmium levels, and microbial dynamics that could elevate cadmium exposure through rice consumption.
View Article and Find Full Text PDF

Biomimetic calcification is a micro-crystallization process that mimics the natural biomineralization process, where biomacromolecules regulate the formation of inorganic minerals. In this study, it is presented that a protein-assisted biomimetic calcification method for the in situ synthesis of nitrogen-doped metal-organic framework (MOF) materials. A series of unique core-shell structures are created by utilizing proteins as templates and guiding agents in the nucleation step, creating ideal conditions for shell growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!