This study aims to evaluate the effects of polymorphisms in glutathione (GSH-) related genes (GSTM1, GSTT1, GSTP1, GCLM, and GCLC) in the distribution of Hg in the blood compartments in humans exposed to methylmercury (MeHg). Subjects (n = 88), exposed to MeHg from fish consumption, were enrolled in the study. Hg species in the plasma compartment were determined by LC-ICP-MS, whereas genotyping was performed by PCR assays. Mean total Hg levels in plasma (THgP) and whole blood (THgB) were 10 ± 4.2 and 37 ± 21, whereas mean levels of plasmatic MeHg (MeHgP), inorganic Hg (IHgP), and HgP/HgB were 4.3 ± 2.9, 5.8 ± 2.3 µg/L, and 0.33 ± 0.15, respectively. GSTM1 and GCLC polymorphisms influence THgP and MeHgP (multivariate analyses, P < 0.050). Null homozygotes for GSTM1 showed higher THgP and MeHgP levels compared to subjects with GSTM1 (THgP β = 0.22, P = 0.035; MeHgP β = 0.30, P = 0.050) and persons carrying at least one T allele for GCLC had significant higher MeHgP (β = 0.59, P = 0.046). Also, polymorphic GCLM subjects had lower THgP/THgB than those with the nonvariant genotype. Taken together, data of this study suggest that GSH-related polymorphisms may change the metabolism of MeHg by modifying the distribution of mercury species iin plasma compartment and the HgP/HgB partitioning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3947838 | PMC |
http://dx.doi.org/10.1155/2014/940952 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!