Ethanol extract of Clitorea ternatea Linn. (EECT) was evaluated for its antihyperglycemic and antioxidative activity in normal and streptozotocin-induced diabetic rats. Antihyperglycemic activity of EECT was studied in normal fasted and glucose fed hyperglycemic and epinephrine induced hyperglycemic rats by estimating fasting serum glucose (FSG) by glucose oxidisae or peroxidase enzymatic method. Antioxidant activity of EECT was studied by assaying lipid peroxide/Thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), total nitric oxide, catalase (CAT) and glutathione levels in diabetic rats. The EECT (200 and 400 mg/kg) showed significant antihyperglycemic activity by decreasing FSG in all hyperglycemic models except epinephrine induced hyperglycemic rats; in which improvement in FSG was observed only with EECT in 400 mg/kg dose, whereas significant decrease in TBARS (P < 0.001), nitric oxide (P < 0.001) and significant increase in SOD (P < 0.001), CAT (P < 0.01) and reduced glutathione levels (P < 0.001) was observed in animals treated with EECT (200 and 400 mg/kg) compared to diabetic control group. The results indicated that EECT has remedial effects on hyperglycemia and oxidative stress in diabetic rats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3968710PMC
http://dx.doi.org/10.4103/0974-8520.127730DOI Listing

Publication Analysis

Top Keywords

diabetic rats
16
400 mg/kg
12
antioxidant activity
8
clitorea ternatea
8
ternatea linn
8
streptozotocin-induced diabetic
8
antihyperglycemic activity
8
activity eect
8
eect studied
8
epinephrine induced
8

Similar Publications

Objectives: This study aimed to determine the effect of 8-week high-intensity interval training (HIIT) on oxidative stress and apoptosis in the hippocampus of male rats with type 2 diabetes (T2D). The study focused on examining the role of proliferator-activated receptor gamma co-activator 1α (PGC1α)/Kelch-like ECH-associated protein Keap1/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway.

Materials And Methods: Twenty-eight 8-week-old Wistar rats were randomly assigned to one of four groups (n=7): control (Con), type 2 diabetes (T2D), exercise (Ex), and exercise + type 2 diabetes (Ex+T2D).

View Article and Find Full Text PDF

Objectives: While ketone bodies are not the main heart fuel, exercise may increase their uptake. Objectives: This study aimed to investigate the effect of 6-week endurance training and Pyruvate dehydrogenase kinase 4 )PDK4( inhibition on ketone bodies metabolism in the heart of diabetic rats with emphasis on the role of Peroxisome proliferator-activated receptor-gamma coactivator PGC-1alpha (PGC-1α).

Materials And Methods: Sixty male Wistar rats were divided into eight groups: healthy control group (CONT), endurance training group (TRA), diabetic group (DM), DM + EX group, Dichloroacetate (DCA) group, DM + DCA group, TRA + DCA group, and DM + TRA + DCA group.

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate the effects of pre-conditioning exercise on body lipid metabolism, leptin secretion, and the downstream pathways at the early stage of type 2 diabetes mellitus (T2DM).

Materials And Methods: The T2DM model was established using an 8-week high-sugar, high-fat diet combined. The T2DM model was established using an 8-week high-sugar, high-fat diet combined with streptozocin (STZ) injection.

View Article and Find Full Text PDF

Objectives: Increased nuclear factor (NF-kβ) and carbonyl stress due to decreased glyoxalase-1 activity (Glo-I) contribute significantly to insulin resistance and vascular complications. Therefore, we aimed to study the impact of the combination of thiamine and niacin on hepatic NF-kβ signaling, metabolic profile, and Glo-I activity in male rats with type-2 diabetes (T2DM).

Materials And Methods: Forty male rats were divided equally into five groups: control, diabetic, diabetic treated with thiamine (180 mg/l in drinking water), niacin (180 mg/l), and a combination of both.

View Article and Find Full Text PDF

Metformin ameliorates peripheral neuropathy in diabetic rats by downregulating autophagy via the AMPK pathway.

Arch Endocrinol Metab

January 2025

Fuzhou First General Hospital Affiliated with Fujian Medical University Department of Endocrinology FuzhouFujian China Department of Endocrinology, Fuzhou First General Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, China.

Objective: Diabetic neuropathy (DN) is an important complication of diabetes mellitus. Autophagy is considered to be potentially involved in the regulation of DN. Metformin is broadly utilized in the first-line treatment of diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!