A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Increased expression of microRNA-29a in ALS mice: functional analysis of its inhibition. | LitMetric

Increased expression of microRNA-29a in ALS mice: functional analysis of its inhibition.

J Mol Neurosci

Centre for the Study of Neurological Disorders, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland.

Published: June 2014

Endoplasmic reticulum (ER) stress has been implicated in a number of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). MicroRNAs are small ribonucleic acids which can modulate protein expression by binding to the 3'UTR of target mRNAs. We recently identified increased miR-29a expression in response to ER stress in neurons, with members of the miR-29 family implicated in cancer and neurodegeneration. We found high expression of miR-29a in the mouse brain and spinal cord by quantitative PCR analysis and increased expression of miR-29a in the spinal cord of SOD1(G93A) transgenic mice, a mouse model of familial ALS. In situ hybridisation experiments revealed increased miR-29a expression in the lumbar spinal cord of SOD1(G93A) transgenic mice from postnatal day 70 onward when compared to wild-type mice. miR-29a knockdown was achieved in the CNS in vivo after a single intracerebroventricular injection of a miR-29a-specific antagomir. While analysis of disease progression and motor function could not identify a significant alteration in ALS disease manifestations, a trend towards increased lifespan was observed in male SOD1(G93A) mice. These findings demonstrate that miR-29a may act as a marker for disease progression in SOD1(G93A) mice, and provide first proof-of-concept for a therapeutic modulation of miR-29a function in ALS.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12031-014-0290-yDOI Listing

Publication Analysis

Top Keywords

spinal cord
12
increased expression
8
increased mir-29a
8
mir-29a expression
8
expression mir-29a
8
cord sod1g93a
8
sod1g93a transgenic
8
transgenic mice
8
disease progression
8
sod1g93a mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!