mTOR ensures increased release and reduced uptake of the organic osmolyte taurine under hypoosmotic conditions in mouse fibroblasts.

Am J Physiol Cell Physiol

Department of Biology, Section for Molecular Integrative Physiology, University of Copenhagen, Copenhagen, Denmark.

Published: June 2014

Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that modulates translation in response to growth factors and alterations in nutrient availability following hypoxia and DNA damage. Here we demonstrate that mTOR activity in Ehrlich Lettré ascites (ELA) cells is transiently increased within minutes following osmotic cell swelling and that inhibition of phosphatidylinositol-3-phosphatase (PTEN) counteracts the upstream phosphatidylinositol kinase and potentiates mTOR activity. PTEN inhibition concomitantly potentiates swelling-induced taurine release via the volume-sensitive transporter for organic osmolytes and anion channels (VSOAC) and enhances swelling-induced inhibition of taurine uptake via the taurine-specific transporter (TauT). Chronic osmotic stress, i.e., exposure to hypotonic or hypertonic media for 24 h, reduces and increases mTOR activity in ELA cells, respectively. Using rapamycin, we demonstrate that mTOR inhibition is accompanied by reduction in TauT activity and increase in VSOAC activity in cells expressing high (NIH3T3 fibroblasts) or low (ELA) amounts of mTOR protein. The effect of mTOR inhibition on TauT activity reflects reduced TauT mRNA, TauT protein abundance, and an overall reduction in protein synthesis, whereas the effect on VSOAC is mimicked by catalase inhibition and correlates with reduced catalase mRNA abundance. Hence, mTOR activity favors loss of taurine following hypoosmotic cell swelling, i.e., release via VSOAC and uptake via TauT during acute hypotonic exposure is potentiated and reduced, respectively, by phosphorylation involving mTOR and/or the kinases upstream to mTOR. Decrease in TauT activity during chronic hypotonic exposure, on the other hand, involves reduction in expression/activity of TauT and enzymes in antioxidative defense.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00005.2014DOI Listing

Publication Analysis

Top Keywords

mtor activity
16
taut activity
12
mtor
11
taurine hypoosmotic
8
demonstrate mtor
8
activity
8
ela cells
8
cell swelling
8
taut
8
mtor inhibition
8

Similar Publications

Male infertility is a common complication of diabetes. Diabetes leads to the decrease of zinc (Zn) content, which is a necessary trace element to maintain the normal structure and function of reproductive organs and spermatogenesis. The purpose of this study was to investigate the effect of metformin combined with zinc on testis and sperm in diabetic mice.

View Article and Find Full Text PDF

SRT3025-loaded cell membrane hybrid liposomes (3025@ML) enhanced anti-tumor activity of Oxaliplatin via inhibiting pyruvate kinase M2 and fatty acid synthase.

Lipids Health Dis

January 2025

Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China.

Background: Bladder cancer is one of the most common malignancies of the urinary system. Despite significant advances in diagnosis and treatment, the compromised therapeutic effect of chemotherapeutic agents, such as Oxaliplatin (OXA), remains a major clinical challenge. Thus, a combination therapy is required to enhance the OXA's therapeutic effectiveness and improve patient outcomes.

View Article and Find Full Text PDF

First generation vanadium-based PTEN inhibitors: Comparative study in vitro and in vivo and identification of a novel mechanism of action.

Biochem Pharmacol

January 2025

Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; Institute of Biosciences, University Research Center Ioannina, University of Ioannina, Ioannina, Greece. Electronic address:

PTEN, a tumor suppressor phosphatase, regulates cellular functions by antagonizing the growth promoting PI3K/Akt/mTOR pathway through the dephosphorylation of the second messenger PIP. Many preclinical cellular and animal studies have used PTEN inhibitors to highlight specific disease contexts where acute activation of PI3K/Akt/mTOR pathway might offer therapeutic advantages. In the present study we have re-evaluated first-generation PTEN inhibitors, including established bisperoxo-vanadium complexes (bpVs).

View Article and Find Full Text PDF

PAS domain-containing serine/threonine-protein kinase (PASK) is a nutrient and energy sensor regulated by fasting/refeeding conditions in hypothalamic areas involved in controlling energy balance. In this sense, PASK plays a role in coordinating the activation/inactivation of AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) in response to fasting. PASK deficiency protects against the development of diet-induced obesity.

View Article and Find Full Text PDF

Peripheral nerve injury (PNI) as a common clinical issue that presents significant challenges for repair. Factors such as donor site morbidity from autologous transplantation, slow recovery of long-distance nerve damage, and deficiencies in local cytokines and extracellular matrix contribute to the complexity of effective PNI treatment. It is extremely urgent to develop functional nerve guidance conduits (NGCs) as substitutes for nerve autografts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!