Preclinical characterization of signal transducer and activator of transcription 3 small molecule inhibitors for primary and metastatic brain cancer therapy.

J Pharmacol Exp Ther

Department of Neurosurgery and Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, Michigan (H.H.A., C.P., N.V., J.S., R.D., P.R.L., M.G.C.); Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California (H.H.A.); Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan (E.P., J.D.H.); Department of Pathology, University of Michigan School of Medicine, University Hospital, Ann Arbor, Michigan (H.A.); Department of Biomedical and Molecular Sciences, Queen's University School of Medicine, Kingston, Ontario, Canada (L.R.); and Department of Neurology, Henry Ford Hospital, Detroit, Michigan (T.M.).

Published: June 2014

Signal transducer and activator of transcription 3 (STAT3) has been implicated as a hub for multiple oncogenic pathways. The constitutive activation of STAT3 is present in several cancers, including gliomas (GBMs), and is associated with poor therapeutic responses. Phosphorylation of STAT3 triggers its dimerization and nuclear transport, where it promotes the transcription of genes that stimulate tumor growth. In light of this role, inhibitors of the STAT3 pathway are attractive therapeutic targets for cancer. To this end, we evaluated the STAT3-inhibitory activities of three compounds (CPA-7 [trichloronitritodiammineplatinum(IV)], WP1066 [(S,E)-3-(6-bromopyridin-2-yl)-2-cyano-N-(1-phenylethyl)acrylamide, C17H14BrN3O], and ML116 [4-benzyl-1-{thieno[2,3-d]pyrimidin-4-yl}piperidine, C18H19N3S]) in cultured rodent and human glioma cells, including GBM cancer stem cells. Our results demonstrate a potent induction of growth arrest in GBM cells after drug treatment with a concomitant induction of cell death. Although these compounds were effective at inhibiting STAT3 phosphorylation, they also displayed variable dose-dependent inhibition of STAT1, STAT5, and nuclear factor κ light-chain enhancer of activated B cells. The therapeutic efficacy of these compounds was further evaluated in peripheral and intracranial mouse tumor models. Whereas CPA-7 elicited regression of peripheral tumors, both melanoma and GBM, its efficacy was not evident when the tumors were implanted within the brain. Our data suggest poor permeability of this compound to tumors located within the central nervous system. WP1066 and ML116 exhibited poor in vivo efficacy. In summary, CPA-7 constitutes a powerful anticancer agent in models of peripheral solid cancers. Our data strongly support further development of CPA-7-derived compounds with increased permeability to enhance their efficacy in primary and metastatic brain tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019317PMC
http://dx.doi.org/10.1124/jpet.114.214619DOI Listing

Publication Analysis

Top Keywords

signal transducer
8
transducer activator
8
activator transcription
8
primary metastatic
8
metastatic brain
8
stat3
5
preclinical characterization
4
characterization signal
4
transcription small
4
small molecule
4

Similar Publications

Diverse autoinhibitory mechanisms of FIIND-containing proteins: Insight into regulation of NLRP1 and CARD8 inflammasome.

PLoS Pathog

January 2025

Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Function-to-find domain (FIIND)-containing proteins, including NLRP1 and CARD8, are vital components of the inflammasome signaling pathway, critical for the innate immune response. These proteins exist in various forms due to autoproteolysis within the FIIND domain, resulting in full-length (FL), cleaved N-terminal (NT), and cleaved C-terminal (CT) peptides, which form autoinhibitory complexes in the steady state. However, the detailed mechanism remains elusive.

View Article and Find Full Text PDF

The unique architecture of the liver consists of hepatic lobules, dividing the hepatic features of metabolism into 2 distinct zones, namely the pericentral and periportal zones, the spatial characteristics of which are broadly defined as metabolic zonation. R-spondin3 (Rspo3), a bioactive protein promoting the Wnt signaling pathway, regulates metabolic features especially around hepatic central veins. However, the functional impact of hepatic metabolic zonation, regulated by the Rspo3/Wnt signaling pathway, on whole-body metabolism homeostasis remains poorly understood.

View Article and Find Full Text PDF

Identification of Cell Fate Determining Transcription Factors for Generating Brain Endothelial Cells.

Stem Cell Rev Rep

January 2025

Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, Leuven, 3000, Belgium.

Reliable models of the blood-brain barrier (BBB), wherein brain microvascular endothelial cells (BMECs) play a key role in maintenance of barrier function, are essential tools for developing therapeutics and disease modeling. Recent studies explored generating BMEC-like cells from human pluripotent stem cells (hPSCs) by mimicking brain-microenvironment signals or genetic reprogramming. However, due to the lack of comprehensive transcriptional studies, the exact cellular identity of most of these cells remains poorly defined.

View Article and Find Full Text PDF

Background: Current treatment strategies for hormone-dependent breast cancers, including adjuvant endocrine therapy, often fail due to persistence of breast cancer stem cells (brCSCs), which are significant contributors to tumor recurrence and treatment resistance. Therefore, gaining deeper insights into the molecular regulators driving breast cancer aggressiveness is important. Moreover, given the complexities and expenses involved in developing new pharmacological agents, the strategic repurposing of existing FDA-approved drugs to target these key molecular pathways presents a compelling approach for identifying novel therapeutic interventions aimed at mitigating tumor refractoriness.

View Article and Find Full Text PDF

Carboxylated Graphene: An Innovative Approach to Enhanced IgA-SARS-CoV-2 Electrochemical Biosensing.

Biosensors (Basel)

January 2025

LABEL-Laboratório de Bioeletrônica e Eletroanalítica, Central Analítica Multidisciplinar, Universidade Federal do Amazonas, Manaus 69067-005, Amazonas, Brazil.

Biosensors harness biological materials as receptors linked to transducers, enabling the capture and transformation of primary biorecognition signals into measurable outputs. This study presents a novel carboxylation method for synthesizing carboxylated graphene (CG) under acidic conditions, enhancing biosensing capabilities. The characterization of the CG was performed using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, thermogravimetric analysis (TGA), and X-ray diffraction (XRD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!