The hydration of the oxygen-evolving complex (OEC) was characterized in the dark stable S1 state of photosystem II using water R1(ω) NMR dispersion (NMRD) profiles. The R1(ω) NMRD profiles were recorded over a frequency range from 0.01 MHz to 40 MHz for both intact and Mn-depleted photosystem II core complexes from Thermosynechococcus vulcanus (T. vulcanus). The intact-minus-(Mn)-depleted difference NMRD profiles show a characteristic dispersion from approximately 0.03 MHz to 1 MHz, which is interpreted on the basis of the Solomon-Bloembergen-Morgan (SBM) and the slow motion theories as being due to a paramagnetic enhanced relaxation (PRE) of water protons. Both theories are qualitatively consistent with the ST = 1, g = 4.9 paramagnetic state previously described for the S1 state of the OEC; however, an alternative explanation involving the loss of a separate class of long-lived internal waters due to the Mn-depletion procedure can presently not be ruled out. Using a point-dipole approximation the PRE-NMRD effect can be described as being caused by 1-2 water molecules that are located about 10 Å away from the spin center of the Mn4CaO5 cluster in the OEC. The application of the SBM theory to the dispersion observed for PSII in the S1 state is questionable, because the parameters extracted do not fulfil the presupposed perturbation criterion. In contrast, the slow motion theory gives a consistent picture indicating that the water molecules are in fast chemical exchange with the bulk (τw < 1 μs). The modulation of the zero-field splitting (ZFS) interaction suggests a (restricted) reorientation/structural equilibrium of the Mn4CaO5 cluster with a characteristic time constant of τZFS = 0.6-0.9 μs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cp55232b | DOI Listing |
Materials (Basel)
October 2024
Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznan, Poland.
Using liquid crystals in near-infrared applications suffers from effects related to processes like parasitic absorption and high sensitivity to UV-light exposure. One way of managing these disadvantages is to use deuterated systems. The combined H and H nuclear magnetic resonance relaxometry method (FFC NMR), dielectric spectroscopy (DS), optical microscopy (POM), and differential scanning calorimetry (DSC) approach was applied to investigate the influence of selective deuteration on the molecular dynamics, thermal properties, self-organization, and electric-field responsiveness to a 4'-pentyl-4-biphenylcarbonitrile (5CB) liquid crystal.
View Article and Find Full Text PDFLangmuir
October 2024
CRM2 (Cristallographie, Résonance Magnétique et Modélisations), CNRS, Université de Lorraine, Vandœuvre-lès-Nancy F-54500, France.
Due to weak exchange interactions, magnetite particles at a critical diameter of about 20 nm are considered monodomain. At this size, they exhibit a phenomenological magnetic property called superparamagnetism, making them useful as magnetic resonance imaging contrast agents, or MRI CAs. However, questions persist regarding the impact of using different physiological solvents and varying the environment in which these particles are dispersed on their performance, determined by their relaxivity.
View Article and Find Full Text PDFDalton Trans
May 2024
Centre de Biophysique Moléculaire CNRS UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France.
We investigated the coordination properties of original macrocyclic Ln complexes comprising an imidazothiadiazole heterocycle. The thermodynamic stability of the Gd complex was determined by a combination of potentiometric and photophysical measurements. The kinetic inertness was assessed in highly acidic media.
View Article and Find Full Text PDFInorg Chem
May 2024
Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China 325035.
In recent years, pyclen-based complexes have attracted a great deal of interest as magnetic resonance imaging (MRI) contrast agents (CAs) and luminescent materials, as well as radiopharmaceuticals. Remarkably, gadopiclenol, a Gd(III) bishydrated complex featuring a pyclen-based heptadentate ligand, received approval as a novel contrast agent for clinical MRI application in 2022. To maximize stability and efficiency, two novel chiral pyclen-based chelators and their complexes were developed in this study.
View Article and Find Full Text PDFJ Am Chem Soc
January 2024
Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy.
Gd-L1 is a macrocyclic Gd-HPDO3A derivative functionalized with a short spacer to a trisulfonated pyrene. When compared to Gd-HPDO3A, the increased relaxivity appears to be determined by both the higher molecular weight and the occurrence of an intramolecularly catalyzed prototropic exchange of the coordinated OH moiety. In water, Gd-L1 displayed a relaxivity of 7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!