Genus Enterovirus (Family Picornaviridae,) consists of twelve species divided into genetically diverse types by their capsid protein VP1 coding sequences. Each enterovirus type can further be divided into intra-typic sub-clusters (genotypes). The aim of this study was to elucidate what leads to the emergence of novel enterovirus clades (types and genotypes). An evolutionary analysis was conducted for a sub-group of Enterovirus C species that contains types Coxsackievirus A21 (CVA-21), CVA-24, Enterovirus C95 (EV-C95), EV-C96 and EV-C99. VP1 gene datasets were collected and analysed to infer the phylogeny, rate of evolution, nucleotide and amino acid substitution patterns and signs of selection. In VP1 coding gene, high intra-typic sequence diversities and robust grouping into distinct genotypes within each type were detected. Within each type the majority of nucleotide substitutions were synonymous and the non-synonymous substitutions tended to cluster in distinct highly polymorphic sites. Signs of positive selection were detected in some of these highly polymorphic sites, while strong negative selection was indicated in most of the codons. Despite robust clustering to intra-typic genotypes, only few genotype-specific 'signature' amino acids were detected. In contrast, when different enterovirus types were compared, there was a clear tendency towards fixation of type-specific 'signature' amino acids. The results suggest that permanent fixation of type-specific amino acids is a hallmark associated with evolution of different enterovirus types, whereas neutral evolution and/or (frequency-dependent) positive selection in few highly polymorphic amino acid sites are the dominant forms of evolution when strains within an enterovirus type are compared.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3973639PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0093737PLOS

Publication Analysis

Top Keywords

highly polymorphic
12
amino acids
12
enterovirus
9
vp1 gene
8
enterovirus species
8
cva-21 cva-24
8
ev-c95 ev-c96
8
ev-c96 ev-c99
8
vp1 coding
8
enterovirus type
8

Similar Publications

Cardiovascular diseases (CVDs) and cerebrovascular diseases (CeVDs) are closely related vascular diseases, sharing common cardiometabolic risk factors (RFs). Although pleiotropic genetic variants of these two diseases have been reported, their underlying pathological mechanisms are still unclear. Leveraging GWAS summary data and using genetic correlation, pleiotropic variants identification, and colocalization analyses, we identified 11 colocalized loci for CVDs-CeVDs-BP (blood pressure), CVDs-CeVDs-LIP (lipid traits), and CVDs-CeVDs-cIMT (carotid intima-media thickness) triplets.

View Article and Find Full Text PDF

Genome-Wide Development of InDel-SSRs and Association Analysis of Important Agronomic Traits of Taro () in China.

Curr Issues Mol Biol

November 2024

Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang 330045, China.

Taro ( (L.) Schott) is a tropical tuber crop whose underground corms are used as an important staple food. However, due to a lack of molecular markers, the genetic diversity, germplasm identification, and molecular breeding of taro are greatly limited.

View Article and Find Full Text PDF

Kell is one of the most complex blood group systems, with a highly polymorphic genetic background. Extensive allelic variations in the gene affect the encoded erythrocyte surface protein Kell. Genetic variants causing aberrant splicing, premature termination of protein translation, or specific amino acid exchanges lead to a variety of different phenotypes with altered Kell expression levels or changes in the antigenic properties of the Kell protein.

View Article and Find Full Text PDF

The need for producing in environmentally resilient system drives new research to achieve sustainable beef production. Water footprint of the beef supply chain is a concern that must be addressed, aiming to improve water use within the production chain. One approach is genetic selection of beef cattle for water efficiency.

View Article and Find Full Text PDF

Background: Pertussis is a highly contagious respiratory disease caused by (BP). Despite global control of pertussis cases through the Expanded Programme on Immunization (EPI), there has been a significant increase in the incidence of pertussis in recent years, characterized by a "resurgence" in developed countries with high immunization rates as well as a comparable reemergence in certain areas of China. We aim to explore the genotypes and antimicrobial susceptibility of circulating BP from children in Hebei.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!