This study demonstrates a new concept of calibrating surface enhanced Raman scattering (SERS) intensities without using additional substances as an internal standard and explores factors such as laser fluctuation and different Ag substrates, which affect the results of quantitative analyses based on SERS. To demonstrate the capabilities of the concept, the model analyte adenine has been chosen. A lab-on-a-chip device is applied for the measurements to guarantee consistent data recording. In order to simulate varied measuring conditions, two varying silver colloids (batch 1 and 2) are utilized as a SERS substrate and two different laser power levels (25 or 55 mW) are applied on the sample. A concentration gradient was generated which allows the use of the analyte itself for the correction of the resulting SERS spectra regarding intensity deviations caused by different ambient conditions. In doing so, a vast improvement in the quantification using SERS, especially in view of the comparability, reproducibility and repeatability, is demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cp55312d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!