The purpose of the present work was to estimate the changes in spatial distribution and optical density of macular pigment (MP) with age. A fundus imaging system with high spatial and spectral resolution was adapted to form an indirect ophthalmoscope. The double optical density at 490 nm of the MP as a function of the location in the retina was obtained for 33 healthy subjects (ages: 21-60 years). There was an increase in spatial extent and decrease in double optical density with age. Furthermore, the spatial distribution of MP showed central areas with irregular shapes and a tendency toward asymmetry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.31.000A87 | DOI Listing |
Transl Vis Sci Technol
January 2025
School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.
Purpose: The purpose of this study was to develop and validate a deep-learning model for noninvasive anemia detection, hemoglobin (Hb) level estimation, and identification of anemia-related retinal features using fundus images.
Methods: The dataset included 2265 participants aged 40 years and above from a population-based study in South India. The dataset included ocular and systemic clinical parameters, dilated retinal fundus images, and hematological data such as complete blood counts and Hb concentration levels.
Transl Vis Sci Technol
January 2025
Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
Purpose: To clarify the clinical and imaging characteristics of Candida keratitis using in vivo confocal microscopy (IVCM) for improved early diagnosis and management.
Methods: A retrospective study of 40 patients with Candida keratitis at Beijing Tongren Hospital from January 2015 to December 2023 was conducted. Data included demographics, risk factors, clinical assessments, lab tests, and IVCM images.
J Phys Chem A
January 2025
Qingdao Institute for Theoretical and Computational Sciences and Center for Optics Research and Engineering, Shandong University, Qingdao 266237, P. R. China.
A hybrid analytical-numerical integration scheme is introduced to accelerate the Fock build in self-consistent field (SCF) and time-dependent density functional theory (TDDFT) calculations. To evaluate the Coulomb matrix [], the density matrix is first decomposed into two parts, the superposition of atomic density matrices and the rest = -. While [] is evaluated analytically, [] is evaluated fully numerically [with the multipole expansion of the Coulomb potential (MECP)] during the SCF iterations.
View Article and Find Full Text PDFInorg Chem
January 2025
College of Physics, Qingdao University, National Demonstration Center for Experiment Applied Physics Education (Qingdao University), Qingdao Broadband Terahertz Spectroscopy Technology Engineering Research Center (Qingdao University), Qingdao 266071, China.
As promising optoelectronic functional materials in the short-wavelength spectral region, such as ultraviolet (UV) and deep UV, phosphates have recently received increased attention. However, phosphate materials commonly suffer from limited birefringence owing to the highly symmetrical PO tetrahedra. We herein report a layered tin(II) phosphate with improved birefringence.
View Article and Find Full Text PDFBiotechnol Prog
January 2025
Amgen, Cambridge, Massachusetts, USA.
The biopharmaceutical industry is shifting toward employing digital analytical tools for improved understanding of systems biology data and production of quality products. The implementation of these technologies can streamline the manufacturing process by enabling faster responses, reducing manual measurements, and building continuous and automated capabilities. This study discusses the use of soft sensor models for prediction of viability and viable cell density (VCD) in CHO cell culture processes by using in-line optical density and permittivity sensors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!