The sparse estimation methods that utilize the ℓp-norm, with p being between 0 and 1, have shown better utility in providing optimal solutions to the inverse problem in diffuse optical tomography. These ℓp-norm-based regularizations make the optimization function nonconvex, and algorithms that implement ℓp-norm minimization utilize approximations to the original ℓp-norm function. In this work, three such typical methods for implementing the ℓp-norm were considered, namely, iteratively reweighted ℓ1-minimization (IRL1), iteratively reweighted least squares (IRLS), and the iteratively thresholding method (ITM). These methods were deployed for performing diffuse optical tomographic image reconstruction, and a systematic comparison with the help of three numerical and gelatin phantom cases was executed. The results indicate that these three methods in the implementation of ℓp-minimization yields similar results, with IRL1 fairing marginally in cases considered here in terms of shape recovery and quantitative accuracy of the reconstructed diffuse optical tomographic images.

Download full-text PDF

Source
http://dx.doi.org/10.1364/JOSAA.31.000852DOI Listing

Publication Analysis

Top Keywords

diffuse optical
16
optical tomography
8
iteratively reweighted
8
optical tomographic
8
performance evaluation
4
evaluation typical
4
typical approximation
4
approximation algorithms
4
algorithms nonconvex
4
nonconvex ℓp-minimization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!