A new notosuchian crocodyliform from the Late Cretaceous Bauru Group found in the southeastern State of São Paulo (Brazil) is described here. The new taxon, Caipirasuchus stenognathus, is referred as a new species of the recently erected genus Caipirasuchus within the clade Sphagesauridae based on a phylogenetic analysis of basal mesoeucrocodylians. Caipirasuchus stenognathus is represented by an almost complete skull and lower jaw that has autapomorphic characters that distinguish it from other species of Sphagesauridae. These autapomorphies include: maxilla forming part of the orbital margin (absence of lacrimal-jugal contact), nasal with smooth depressions on the posterior region close to the contact with the maxilla and lacrimal, postorbital with posterior palpebral facet that extends posteriorly underneath the ear-flap groove, and a distinct anterior process of the medial flange of the retroarticular process. Additionally, the new taxon lacks autapomorphic features described in other sphagesaurids. The phylogenetic analysis results in a monophyletic genus Caipirasuchus, that is the sister group of a clade fomed by Sphagesaurus huenei, Caryonosuchus pricei, and Armadillosuchus arrudai. Sphagesaurids also include a basal clade formed by Adamantinasuchus navae and Yacarerani boliviensis. Other notosuchian taxa, such as Mariliasuchus amarali, Labidiosuchus amicum, Notosuchus terrestris, and Morrinhosuchus luziae are successive sister taxa of Sphagesauridae, forming a clade of advanced notosuchians that are restricted to the Late Cretaceous of South America. These results contrast with most previous phylogenetic hypotheses of the group that depicted some members of Sphagesauridae as more closely related to baurusuchids, or found Asian (e.g., Chimaerasuchus) or African (Malawisuchus, Pakasuchus) forms nested within advanced notosuchians that are, according to our analysis, endemic of the Late Cretaceous of South America.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3973723 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0093105 | PLOS |
J Anat
January 2025
Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", CONICET, Buenos Aires, Argentina.
Notosuchia were a successful lineage of Crocodyliformes that achieved a remarkable diversity during the Cretaceous of Gondwana, particularly in South America. Although paleohistology has expanded our knowledge of the paleobiology of notosuchians, several clades of this lineage remain poorly understood in this aspect. Here we help to address this gap by conducting the first histological analysis of appendicular bones of a peirosaurid.
View Article and Find Full Text PDFSci Rep
January 2025
New Valley University, El-Kharga, 72512, New Valley, Egypt.
The exploration and development of hydrocarbon resources in the Western Desert require more continuous activities. The Silah is a newly discovered field in this region. Therefore, this study emphasizes the application of petrophysical evaluation to sandstone and carbonate reservoirs from the late and early Cretaceous.
View Article and Find Full Text PDFJ Anat
January 2025
Department of Earth Sciences, University College London, London, UK.
Argochampsa krebsi is a gavialoid crocodylian from the early Paleogene of North Africa. Based on its recovered phylogenetic relationship with South American species, it has been inferred to have been capable of transoceanic dispersal, but potential anatomical correlates for a marine lifestyle have yet to be identified. Based on CT scans of a mostly complete and well-preserved skull, we reconstruct the endocranial anatomy of Argochampsa and compare it to that of other gavialoids.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Department of Biology, Saint Louis University, St Louis, MO 63103, USA.
Jawless vertebrates once dominated Palaeozoic waters, but just two lineages have persisted to the present day: lampreys and hagfishes. Living lampreys are a relatively small clade, with just over 50 species described, but knowledge of their evolutionary relationships has always been based on either a few mitochondrial genes or a small number of taxa. Biogeographers have noted the disjunct antitropical distribution of living lamprey families.
View Article and Find Full Text PDFMol Phylogenet Evol
December 2024
SNSB-Zoologische Staatssammlung München, Münchhausenstraße 21, D-81247 Munich, Germany; GeoBio-Center, Ludwig-Maximilians-University, Richard-Wagner-Straße 10, D-80333 Munich, Germany.
Disjunct distributions, characterised by spatially separated populations of related species, offer insights into historical biogeographic patterns and evolutionary processes. This study investigates the evolutionary history of the diving beetle subfamily Lancetinae through a phylogenomic approach incorporating ultraconserved elements (UCEs) and heritage genetic markers. Our findings support an early Miocene origin for Lancetinae, with subsequent diversification influenced by historical vicariance events and long-distance dispersal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!