Short- and long-term side effects following the treatment of cancer with radiation are strongly related to the amount of dose deposited to the healthy tissue surrounding the tumor. The characterization of the radiation field outside the planned target volume is the first step for estimating health risks, such as developing a secondary radioinduced malignancy. In ion and high-energy photon treatments, the major contribution to the dose deposited in the far-out-of-field region is given by neutrons, which are produced by nuclear interaction of the primary radiation with the beam line components and the patient's body. Measurements of the secondary neutron field and its contribution to the absorbed dose and equivalent dose for different radiotherapy technologies are presented in this work. An anthropomorphic RANDO phantom was irradiated with a treatment plan designed for a simulated 5 × 2 × 5 cm³ cancer volume located in the center of the head. The experiment was repeated with 25 MV IMRT (intensity modulated radiation therapy) photons and charged particles (protons and carbon ions) delivered with both passive modulation and spot scanning in different facilities. The measurements were performed with active (silicon-scintillation) and passive (bubble, thermoluminescence ⁶LiF:Mg, Ti (TLD-600) and ⁷LiF:Mg, Ti (TLD-700)) detectors to investigate the production of neutral particles both inside and outside the phantom. These techniques provided the whole energy spectrum (E ≤ 20 MeV) and corresponding absorbed dose and dose equivalent of photo neutrons produced by x-rays, the fluence of thermal neutrons for all irradiation types and the absorbed dose deposited by neutrons with 0.8 < E < 10 MeV during the treatment with scanned carbon ions. The highest yield of thermal neutrons is observed for photons and, among ions, for passively modulated beams. For the treatment with high-energy x-rays, the contribution of secondary neutrons to the dose equivalent is of the same order of magnitude as the primary radiation. In carbon therapy delivered with raster scanning, the absorbed dose deposited by neutrons in the energy region between 0.8 and 10 MeV is almost two orders of magnitude lower than charged fragments. We conclude that, within the energy range explored in this experimental work, the out-of-field dose from secondary neutrons is lowest for ions delivered by scanning, followed by passive modulation, and finally by high-energy IMRT photons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/59/8/2111 | DOI Listing |
Inhal Toxicol
January 2025
Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA.
: Pulmonary exposure to emissions from manipulating solid surface composite (SSC) materials has been associated with adverse health effects in humans and laboratory animals. Previous and investigations of SSC toxicity have been limited by particle delivery methods that do not fully recapitulate the workplace environment. This study sought to determine the acute SSC-induced pulmonary responses whole-body inhalation exposure.
View Article and Find Full Text PDFBackground: In proton radiotherapy, the steep dose deposition profile near the end of the proton's track, the Bragg peak, ensures a more conformed deposition of dose to the tumor region when compared with conventional radiotherapy while reducing the probability of normal tissue complications. However, uncertainties, as in the proton range, patient geometry, and positioning pose challenges to the precise and secure delivery of the treatment plan (TP). In vivo range determination and dose distribution are pivotal for mitigation of uncertainties, opening the possibility to reduce uncertainty margins and for adaptation of the TP.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; National Beef Cattle Improvement Center, Yangling 712100, China. Electronic address:
The regulation of intramuscular fat (IMF) accumulation plays a crucial role in determining meat quality in the beef industry. In humans, fat deposition in skeletal muscle is closely associated with insulin resistance and obesity. However, its underlying mechanisms are not fully elucidated.
View Article and Find Full Text PDFCureus
December 2024
Internal Medicine, West Virginia University, Morgantown, USA.
IgA nephropathy (IgAN) is a common primary glomerulonephritis characterized by the deposition of IgA immune complexes within the glomerular mesangium. IgAN can present with a wide range of clinical manifestations, ranging from asymptomatic hematuria to severe renal disease. This case describes a 67-year-old woman with a history of diabetes mellitus, hypertension, and obesity who presented with acute kidney injury and clinical manifestations of nephrotic syndrome.
View Article and Find Full Text PDFFront Pharmacol
January 2025
National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
Background: Vascular calcification (VC) commonly occurs in diabetes and is associated with cardiovascular disease incidence and mortality. Currently, there is no drug treatment for VC. The Danlian-Tongmai formula (DLTM) is a traditional Chinese medicine (TCM) prescription used for diabetic VC (DVC), but its mechanisms of action remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!