Both endothelial dysfunction and arterial stiffness are surrogate markers of atherosclerosis and thus cardiovascular (CV) events. The milk-derived peptides Val-Pro-Pro (VPP) and Ile-Pro-Pro (IPP) inhibit angiotensin-converting enzyme, dilate blood vessels ex vivo and stimulate nitric oxide (NO) production in cells. In this study, we investigated the effects of either VPP or IPP on arterial function and on target organ damage in vivo. Male Wistar rats were treated with N(G)-nitro-L-arginine methyl ester hydrochloride (L-NAME, 1 g l(-1)), L-NAME+VPP (0.3 g l(-1)) or L-NAME+IPP (0.3 g l(-1)) in their drinking water for 8 weeks. Plasma nitrite and nitrate (NOx) levels were significantly increased in normal Wistar rats after supplementation with either VPP or IPP but not in rats that were chronically treated with L-NAME. Acetylcholine-induced vasorelaxation in the thoracic aorta ring was impaired by L-NAME, whereas vasorelaxation was significantly greater in mice treated with L-NAME+VPP for 1 or 4 weeks or L-NAME+IPP for 4 weeks than in mice treated with L-NAME alone. Four weeks of treatment with either VPP or IPP attenuated the increase in pulse wave velocity (PWV) that was induced by L-NAME. Cardiac and renal damage were observed after 8 weeks of treatment with L-NAME, and either VPP or IPP attenuated this damage. These results show that VPP or IPP attenuates arterial dysfunction and suggest that milk-derived peptides might prevent CV damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/hr.2014.72 | DOI Listing |
Foods
October 2024
Department of Dairy Science, College of Agriculture & Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
Front Microbiol
March 2024
Lactic Acid Bacteria and Yeast Biotechnology, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy.
Introduction: Lactic acid bacteria (LAB) communities shape the sensorial and functional properties of artisanal hard-cooked and long-ripened cheeses made with raw bovine milk like Parmigiano Reggiano (PR) cheese. While patterns of microbial evolution have been well studied in PR cheese, there is a lack of information about how this microbial diversity affects the metabolic and functional properties of PR cheese.
Methods: To fill this information gap, we characterized the cultivable fraction of natural whey starter (NWS) and PR cheeses at different ripening times, both at the species and strain level, and investigated the possible correlation between microbial composition and the evolution of peptide profiles over cheese ripening.
J Agric Food Chem
December 2023
School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
The objective of this study was to explore the molecular targets and mechanism of Ile-Pro-Pro (IPP) and Val-Pro-Pro (VPP) on regulating glucose metabolism in hepatic cells and their in vivo hypoglycemic activities in mice. Results showed that both IPP and VPP (600 μM) significantly enhanced the glucose consumption in HepG2 cells and primary hepatocytes ( < 0.05).
View Article and Find Full Text PDFFEBS Lett
January 2024
Department of Life Sciences, University of Bath, UK.
Human somatic angiotensin-1-converting enzyme (sACE) is composed of a catalytic N-(nACE) and C-domain (cACE) of similar size with different substrate specificities. It is involved in the regulation of blood pressure by converting angiotensin I to the vasoconstrictor angiotensin II and has been a major focus in the development of therapeutics for hypertension. Bioactive peptides from various sources, including milk, have been identified as natural ACE inhibitors.
View Article and Find Full Text PDFMicroorganisms
July 2023
Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2-Pad. Besta, 42100 Reggio Emilia, Italy.
Three strains, namely RBC6, RBC20, and RBN16, were proven to release bioactive peptides during whey protein concentrate (WPC) fermentation, resulting in WPC hydrolysates with biological activities. However, these bioactive peptides can break down during gastro-intestinal digestion (GID), hindering the health-promoting effect of fermented WPC hydrolysates in vivo. In this work, the effect of simulated GID on three WPC hydrolysates fermented with strains, as well as on unfermented WPC was studied in terms of protein hydrolysis, biological activities, and peptidomics profiles, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!