The transactivational property of natural and synthetic chemicals via medaka vitamin D receptor β subtype (VDRβ) was investigated after the development of a stable cell line expressing a Gal4-VDRβ fusion protein for reporter gene assay. Members of vitamin D class, including 1α, 25- dihydroxyvitamin D3 (1,25VD3) were specifically detected as agonists in our system. Although other steroids and chemicals used in the present estimation induced no agonistic response, 10 compounds displayed antagonistic or synergistic activity. Spironolactone, which is an antagonist of corticoid receptors in mammals, competitively inhibited the transactivity of 1,25VD3 by over 80% in a dose dependent manner. Mifepristone and cyproterone acetate were also detected as antagonists, but they significantly acted only at 10µ. Pregnenolone and raloxifene dose-dependently enhanced the activity of 1,25VD3 at EC50 to the maximum level. Diethylstilbestrol, 17α-ethynylestradiol, genistein, and stanozolol were also synergists, but their potency was low. Interestingly, dibutyltin dichloride, which is used as a stabilizer in the production of polyvinyl chloride plastics, produced greater response than maximum effect of 1,25VD3 although the concentration-response curve was not typically sigmoidal. In the present study, we successfully developed a stable reporter gene assay, which allows assessment of the vitamin D-like chemicals toward the medaka VDRβ.

Download full-text PDF

Source
http://dx.doi.org/10.2108/zs130217DOI Listing

Publication Analysis

Top Keywords

reporter gene
12
gene assay
12
stable reporter
8
chemicals medaka
8
assay based
4
based gal4-vitamin
4
gal4-vitamin receptor
4
receptor fusion
4
fusion proteins
4
proteins medaka
4

Similar Publications

Purpose: Inflammatory processes have been involved in diabetic retinopathy (DR). Interleukin (IL)-17A, a pro-inflammatory cytokine, is associated with DR occurrence and development. However, mechanisms underlying the IL-17A impact on DR need further investigations.

View Article and Find Full Text PDF

In the Drosophila brain, neuronal diversity originates from approximately 100 neural stem cells, each dividing asymmetrically. Precise mapping of cell lineages at the single-cell resolution is crucial for understanding the mechanisms that direct neuronal specification. However, existing methods for high-resolution lineage tracing are notably time-consuming and labor-intensive.

View Article and Find Full Text PDF

A key goal of biology is to understand the origin of the many cell types that can be observed during diverse processes such as development, regeneration, and disease. Single-cell RNA-sequencing (scRNA-seq) is commonly used to identify cell types in a tissue or organ. However, organizing the resulting taxonomy of cell types into lineage trees to understand the origins of cell states and relationships between cells remains challenging.

View Article and Find Full Text PDF

Multicolor Cell Lineage Tracing Using MAGIC Markers Strategies.

Methods Mol Biol

January 2025

Institute for Neuroscience of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France.

Multicolor MAGIC Markers strategies are useful lineage tracing tools to study brain development at a multicellular scale. In this chapter, we describe an in utero electroporation method to simultaneously label multiple neighboring progenitors and their respective progeny using these multicolor reporters. In utero electroporation enables the introduction of any gene of interest into embryonic neural progenitors lining the brain ventricles through a simple pipeline consisting of a micro-injection followed by the application of electrical pulses.

View Article and Find Full Text PDF

A new effLuc/Kate dual reporter allele for tumour imaging in mice.

Dis Model Mech

January 2025

Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUW), Vienna, Austria.

Genetically engineered mouse models (GEMMs) are instrumental for modelling local and systemic features of complex diseases such as cancer. Non-invasive, longitudinal cell detection and monitoring in tumors, metastases and/or the micro-environment is paramount to achieve a better spatiotemporal understanding of cancer progression and to evaluate therapies in preclinical studies. Bioluminescent and fluorescent reporters marking tumor cells or their microenvironment are valuable for non-invasive cell detection and monitoring in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!