A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A block matching-based registration algorithm for localization of locally advanced lung tumors. | LitMetric

AI Article Synopsis

  • The study aimed to develop and evaluate a block matching-based registration (BMR) algorithm for accurately locating lung tumors during radiotherapy, focusing on improving patient treatment effectiveness.
  • The BMR approach involved automatically identifying small, nonoverlapping image sections ("blocks") on planning images and registering them to treatment images using a series of iterative processes that progressively refined image resolution and block displacement accuracy.
  • Results showed a 39% improvement in matching accuracy with the multiresolution method and a significant increase in volume overlap alignment from 77% to 91%, indicating enhanced precision in tumor localization.

Article Abstract

Purpose: To implement and evaluate a block matching-based registration (BMR) algorithm for locally advanced lung tumor localization during image-guided radiotherapy.

Methods: Small (1 cm(3)), nonoverlapping image subvolumes ("blocks") were automatically identified on the planning image to cover the tumor surface using a measure of the local intensity gradient. Blocks were independently and automatically registered to the on-treatment image using a rigid transform. To improve speed and robustness, registrations were performed iteratively from coarse to fine image resolution. At each resolution, all block displacements having a near-maximum similarity score were stored. From this list, a single displacement vector for each block was iteratively selected which maximized the consistency of displacement vectors across immediately neighboring blocks. These selected displacements were regularized using a median filter before proceeding to registrations at finer image resolutions. After evaluating all image resolutions, the global rigid transform of the on-treatment image was computed using a Procrustes analysis, providing the couch shift for patient setup correction. This algorithm was evaluated for 18 locally advanced lung cancer patients, each with 4-7 weekly on-treatment computed tomography scans having physician-delineated gross tumor volumes. Volume overlap (VO) and border displacement errors (BDE) were calculated relative to the nominal physician-identified targets to establish residual error after registration.

Results: Implementation of multiresolution registration improved block matching accuracy by 39% compared to registration using only the full resolution images. By also considering multiple potential displacements per block, initial errors were reduced by 65%. Using the final implementation of the BMR algorithm, VO was significantly improved from 77% ± 21% (range: 0%-100%) in the initial bony alignment to 91% ± 8% (range: 56%-100%;p < 0.001). Left-right, anterior-posterior, and superior-inferior systematic BDE were 3.2, 2.4, and 4.4 mm, respectively, with random BDE of 2.4, 2.1, and 2.7 mm. Margins required to include both localization and delineation uncertainties ranged from 5.0 to 11.7 mm, an average of 40% less than required for bony alignment.

Conclusions: BMR is a promising approach for automatic lung tumor localization. Further evaluation is warranted to assess the accuracy and robustness of BMR against other potential localization strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978354PMC
http://dx.doi.org/10.1118/1.4867860DOI Listing

Publication Analysis

Top Keywords

locally advanced
12
advanced lung
12
block matching-based
8
matching-based registration
8
bmr algorithm
8
lung tumor
8
tumor localization
8
on-treatment image
8
rigid transform
8
image resolutions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!