Background: Different pools and functions have recently been attributed to spontaneous and evoked vesicle release. Despite the well-established function of evoked release, the neuronal information transmission, the origin as well as the function of spontaneously fusing synaptic vesicles have remained elusive. Recently spontaneous release was found to e.g. regulate postsynaptic protein synthesis or has been linked to depressive disorder. Nevertheless the strength and cellular localization of this release form was neglected so far, which are both essential parameters in neuronal information processing.

Findings: Here we show that the complete recycling pool can be turned over by spontaneous trafficking and that spontaneous fusion rates critically depend on the neuronal localization of the releasing synapse. Thereby, the distribution equals that of evoked release so that both findings demonstrate a uniform regulation of these fusion modes.

Conclusions: In contrast to recent works, our results strengthen the assumption that identical vesicles are used for evoked and spontaneous release and extended the knowledge about spontaneous fusion with respect to its amount and cellular localization. Therefore our data supported the hypothesis of a regulatory role of spontaneous release in neuronal outgrowth and plasticity as neurites secrete neurotransmitters to initiate process outgrowth of a possible postsynaptic neuron to form a new synaptic connection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022376PMC
http://dx.doi.org/10.1186/1756-6606-7-23DOI Listing

Publication Analysis

Top Keywords

spontaneous release
12
spontaneous
8
spontaneous evoked
8
release
8
vesicle release
8
evoked release
8
release neuronal
8
cellular localization
8
spontaneous fusion
8
evoked
5

Similar Publications

Sub-lethal effects of innovative anti-corrosion nanoadditives on the marine bivalve Ruditapes philippinarum.

Environ Pollut

January 2025

CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.

Corrosion significantly affects the maritime industry. To address this issue, corrosion inhibitors are incorporated into polymeric coatings. However, some state-of-the-art inhibitors are toxic, prone to spontaneous leaching, and interact with coating components.

View Article and Find Full Text PDF

Developmental and neurotoxic effects of dimethyl phthalate on zebrafish embryos and larvae.

Aquat Toxicol

January 2025

Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China. Electronic address:

Dimethyl phthalate (DMP) has been extensively utilized as a plasticizer on a global scale for many years. Its presence in the environment and its harmful effects on living organisms have raised concerns. This study aimed to examine its potential developmental neurotoxicity by utilizing zebrafish as a model.

View Article and Find Full Text PDF

Multifunctional hyaluronic acid microneedle patch enhances diabetic wound healing in diabetic infections.

Int J Biol Macromol

January 2025

Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China; Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China. Electronic address:

Diabetic wounds often exhibit a chronic non-healing state due to the combined effects of multiple factors, including hyperglycemia, impaired angiogenesis, immune dysfunction, bacterial infection, and excessive oxidative stress. Despite the availability of various therapeutic strategies, effectively managing the complex and prolonged healing process of diabetic infected wounds remains challenging. In this study, we combined the natural antidiabetic drug lipoic acid (LA) with the RADA16-YIGSR (RY) peptide obtained through solid-phase synthesis, utilizing reversible hydrogen bonds and coordination bonds for binding.

View Article and Find Full Text PDF

The urothelium and lamina propria (LP) contribute to sensations of bladder fullness by releasing multiple mediators, including prostaglandins (PGs) and adenosine 5'-triphosphate (ATP), that activate or modulate functions of cells throughout the bladder wall. Mediators that are simultaneously released in response to bladder distention likely influence each other's mechanisms of release and action. This study investigated whether PGs could alter the extracellular hydrolysis of ATP by soluble nucleotidases (s-NTDs) released in the LP of nondistended or distended bladders.

View Article and Find Full Text PDF

Neurotransmitter release is triggered in microseconds by Ca-binding to the Synaptotagmin-1 C-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 CB domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca-binding loops away from the fusion site, hindering these putative activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!