Quantitative analysis of cepharanthine in plasma based on semiautomatic microextraction by packed sorbent combined with liquid chromatography.

J Anal Methods Chem

UMR-MD3, Institut de Recherche Biomédicale des Armées, Faculté de Pharmacie, Aix-Marseille Université, 13385 Marseille, France ; Unité de Toxicologie Analytique, Institut de Recherche Biomédicale des Armées, BP 73, 91223 Brétigny-sur-Orge, France.

Published: April 2014

The spread of Plasmodium falciparum resistance toward most of the used drugs requires new antimalarial compounds. Taking advantage of the biodiversity, the ethnopharmacological approach opens the way for the discovery and the characterization of potent original molecules. Previous works led to the selection of a bisbenzylisoquinoline, cepharanthine, extracted from Stephania rotunda, which is mainly present in Cambodia. A sensitive and selective liquid chromatography method has been developed for the determination of cepharanthine in mouse plasma. The method involved a semiautomated microextraction by packed sorbent (MEPS) using 4 mg of solid phase silica-C8 sorbent. LC separation was performed on a Kinetex XB-C18 column (2.6 µm) with a mobile phase of acetonitrile containing formic acid and 10 mM ammonium formate buffer pH 3.5. Data were acquired at 282 nm with a diode array detector. The drug/internal standard peak area ratios were linked via linear relationships to plasma concentrations (75-2,000 ng/mL). Precision was below 5% and accuracy was 99.0-102%. Extraction recovery of cepharanthine was 56-58%. The method was successfully used to determine the pharmacokinetic profile of cepharanthine in healthy and Plasmodium berghei infected mice. The infection did not impact pharmacokinetic parameters of cepharanthine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3945228PMC
http://dx.doi.org/10.1155/2014/695231DOI Listing

Publication Analysis

Top Keywords

microextraction packed
8
packed sorbent
8
liquid chromatography
8
cepharanthine
6
quantitative analysis
4
analysis cepharanthine
4
cepharanthine plasma
4
plasma based
4
based semiautomatic
4
semiautomatic microextraction
4

Similar Publications

In an attempt to enhance the adsorptive properties while addressing the limitations associated with powdered nature, zeolitic imidazolate framework (ZIF-67)-derived cobalt-doped nanoporous carbon (Co-NPC) was incorporated into chitosan and then shaped like hollow fiber by a simple casting method. Further modification with polyaniline (PANI) was also performed to improve extraction efficacy. The applicability of the modified hollow fibers was then investigated by packing them into a cartridge and utilizing them for conducting hollow fibers-packed in-cartridge micro solid-phase extraction (HF-IC µ-SPE) of parabens including methylparaben (MP), ethylparaben (EP), and propylparaben (PP) from human breast milk samples.

View Article and Find Full Text PDF

The release of harmful compounds, particularly dangerous metal ions, into the environment has drawn deep concern from the scientific community. Therefore, it has become common in research to evaluate and quantify the harmful concentrations in the presence of these metal ions in several real samples (food, water, and biological samples). To increase sensitivity and lessen the impact of the matrix, sample pretreatment is a helpful strategy to implement before analysis.

View Article and Find Full Text PDF

Infection of In Vivo and In Vitro Pines with the Pinewood Nematode Bursaphelenchus xylophilus and Isolation of Induced Volatiles.

J Vis Exp

September 2024

INIAV, I.P., National Institute for Agrarian and Veterinary Research, I.P.; GREEN-IT Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA).

The pinewood nematode (PWN) is a phytoparasite that causes pine wilt disease (PWD) in conifer species. This plant parasitic nematode has heavily contributed to pine deforestation in Asian countries, e.g.

View Article and Find Full Text PDF
Article Synopsis
  • Sample preparation is still a major challenge in analytical processes, despite improvements in instruments, with solid-phase extraction becoming favored over traditional methods due to its simplicity and reduced solvent needs.
  • Various microextraction techniques, particularly in-tube solid-phase microextraction (IT-SPME), have been developed for more efficient sample handling and automation, offering a "green extraction technique" option that minimizes solvent use.
  • Innovative materials like molecularly imprinted polymers (MIPs) are enhancing extraction efficiency; MIPs are custom-designed adsorbents that are created through a specific fabrication process to recognize and selectively bind target molecules.
View Article and Find Full Text PDF
Article Synopsis
  • A new method called fiber-in-tube solid-phase microextraction (FIT-SPME) was developed to extract and analyze nine polycyclic aromatic hydrocarbons from refinery water samples using high-performance liquid chromatography with a UV detector.
  • * The method utilizes a special material, UiO-66, applied to stainless steel wires to enhance extraction efficiency.
  • * Results showed strong accuracy with a wide detection range and low relative standard deviations, indicating the method's reliability for analyzing water samples with high dissolved solids.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!