Environmental and population studies concerning exposure to pesticides in iran: a comprehensive review.

Iran Red Crescent Med J

Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, IR Iran.

Published: December 2013

Pesticides are widely used in Iranian agriculture and this has made a major toxicological concern among health professionals. The objective of this study is to explore national data about pesticides toxicity. All relevant databases such as Google Scholar, PubMed, and Scopus in a time period of 1960 to 2012 were searched for the keywords "Pesticides, Iran, Environment, and Population studies". A total of 57 studies were found relevant and then included into study. Almost all non-experimental studies carried out in Iran were classified into two main categories of residue assessment in different samples and toxic effects on human. Depending on the dose and duration of exposure, toxic effects of pesticides have been studied in two classifications including acute toxicity or acute poisoning and chronic toxicity. High extent of pesticides have been used during the past decade in Iran while no enough proper studies were done to explore their possible toxic effects in the environment and the people.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955509PMC
http://dx.doi.org/10.5812/ircmj.13896DOI Listing

Publication Analysis

Top Keywords

toxic effects
12
pesticides
5
environmental population
4
studies
4
population studies
4
studies concerning
4
concerning exposure
4
exposure pesticides
4
iran
4
pesticides iran
4

Similar Publications

The widespread use of pesticides, including diazinon, poses an increased risk of environmental pollution and detrimental effects on biodiversity, food security, and water resources. In this study, we investigated the impact of Potentially Toxic Elements (PTE) including Zn, Cd, V, and Mn on the degradation of diazinon in three different soils. We investigated the capability and performance of four machine learning models to predict residual pesticide concentration, including adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), radial basis function (RBF), and multi-layer perceptron (MLP).

View Article and Find Full Text PDF

Chromium (Cr) is an ever-present abiotic stress that negatively affects crop cultivation and production worldwide. High rhizospheric Cr concentrations inhibit nutrients uptake and their translocation to aboveground parts, thus can affect the growth and development of crop plants. This experiment was designed to evaluate the effects of sole and combined zinc-lysine and iron-lysine applications on photosynthetic efficacy, antioxidative defense, oxidative stress, and nutrient uptake and translocation under Cr stress.

View Article and Find Full Text PDF

Environmental consequences of petroleum mulch application are crucial in regions prone to wind erosion and desertification. This study aimed to assess the long-term effects of petroleum mulching on soil polycyclic aromatic hydrocarbon (PAH) concentrations and the associated human and ecological risk indices. These indices include incremental lifetime cancer risk (ILCR), hazard index (HI), toxic equivalent concentration (TEQ), toxic unit (TU), and risk quotient (RQ) in soil samples from Khuzestan province, Iran.

View Article and Find Full Text PDF

Early childhood caries (ECC), a severe form of dental caries, is exacerbated by the synergistic interaction between Streptococcus mutans and Candida albicans, leading to greater disease severity than their individual effects. This underscores the need for more targeted and potent therapeutic alternatives. Given the promising anti-infective properties of quaternary ammonium surfactants (QAS), this study explores the microbicidal properties of one such QAS, cetyltrimethylammonium chloride (CTAC), against both individual- and dual-species cultures of S.

View Article and Find Full Text PDF

Protein hydrolysis targeted chimeras (PROTACs) represent a different therapeutic approach, particularly relevant for overcoming challenges associated with traditional small molecule inhibitors. These challenges include targeting difficult proteins that are often deemed "undruggable" and addressing issues of acquired resistance. PROTACs employ the body's own E3 ubiquitin ligases to induce the degradation of specific proteins of interest (POIs) through the ubiquitin-proteasome pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!