Aim: To evaluate the anticancer efficacy of CKD-516, a novel vascular-disrupting agent, alone and in combination with doxorubicin in the treatment of hepatocellular carcinoma (HCC).

Materials And Methods: In mice bearing luciferized HCC cells, therapeutic efficacy was assessed for seven days after single administration of CKD-516, doxorubicin, or combination of CKD-516 and doxorubicin.

Results: Bioluminescence-imaging (BLI) signals in the CKD-516 group abruptly decreased initially, but recovered at seven days after treatment. BLI signals in the doxorubicin group gradually decreased over the 7-day period. In the combination group, BLI signals were abruptly reduced and remained suppressed for the 7-day period. On histopathological examination, CKD-516-treated tumors showed extensive central necrosis, whereas the peripheral layers remained viable. Doxorubicin-treated tumors showed mild and scattered necrosis. Tumors from the combination group showed more extensive central and peripheral necrosis, with smaller viable peripheral layers than the CKD-516 group.

Conclusion: Combination therapy can have additive effects for treatment of HCC compared with CKD-516 or doxorubicin monotherapy.

Download full-text PDF

Source

Publication Analysis

Top Keywords

bli signals
12
efficacy ckd-516
8
combination doxorubicin
8
hepatocellular carcinoma
8
ckd-516 doxorubicin
8
7-day period
8
combination group
8
extensive central
8
peripheral layers
8
ckd-516
7

Similar Publications

The technique of using naturally occurring light-emitting reactants (photoproteins and luciferases] that have been extracted from a wide range of animals is known as bioluminescence imaging, or BLI. This imaging offers important details on the location and functional state of regenerative cells inserted into various disease-modeling animals. Reports on gene expression patterns, cell motions, and even the actions of individual biomolecules in whole tissues and live animals have all been made possible by bioluminescence.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) represents a highly malignant subtype of breast cancer with limited therapeutic options. In this study, we designed and synthesized a series of 1,4-DHP derivatives by structure-based strategy, 43 was documented to be a potent SIRT3 activator and exhibited profound anti-proliferative activity in BT-549 and MDA-MB-231 cells with low toxicity over normal cells. Additionally, 43 displayed the ability of direct binding to SIRT3 with a K value of 51.

View Article and Find Full Text PDF

Background: In the tumor microenvironment (TME), the transforming growth factor-β (TGF-β) and programmed cell death receptor 1 (PD-1)/programmed death ligand 1 (PD-L1) signaling axes are complementary, nonredundant immunosuppressive signaling pathways. Studies have revealed that active TGF-β is mainly released from the glycoprotein A repetitions predominant (GARP)-TGF-β complex on the surface of activated regulatory T cells (Tregs), B cells, natural killer (NK) cells, and tumor cells. The currently available antibodies or fusion proteins that target TGF-β are limited in their abilities to simultaneously block TGF-β release and neutralize active TGF-β in the TME, thus limiting their antitumor effects.

View Article and Find Full Text PDF

Trametinib and M17, a novel small molecule inhibitor of AKT, display a synergistic antitumor effect in triple negative breast cancer cells through the AKT/mTOR and MEK/ERK pathways.

Bioorg Chem

November 2024

State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Triple negative breast cancer (TNBC) is associated with a poor prognosis and limited response to traditional chemotherapy, necessitating the exploration of novel treatment approaches. Recent researches have highlighted the interconnected roles of the PI3K/AKT pathway and MAPK pathway in TNBC cells, contributing to the efficacy of treatments. Therefore, the concurrent inhibition of both pathways presents a potential new therapeutic strategy for TNBC patients.

View Article and Find Full Text PDF

A Comparison of the Sensitivity and Cellular Detection Capabilities of Magnetic Particle Imaging and Bioluminescence Imaging.

Tomography

November 2024

Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada.

Background: Preclinical cell tracking is enhanced with a multimodal imaging approach. Bioluminescence imaging (BLI) is a highly sensitive optical modality that relies on engineering cells to constitutively express a luciferase gene. Magnetic particle imaging (MPI) is a newer imaging modality that directly detects superparamagnetic iron oxide (SPIO) particles used to label cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!