A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pickering-emulsion inversion strategy for separating and recycling nanoparticle catalysts. | LitMetric

Pickering-emulsion inversion strategy for separating and recycling nanoparticle catalysts.

Chemphyschem

School of Chemistry and Chemical Engineering, Shanxi University, Wucheng Road 92, Taiyuan 030006 (China); Yabao Pharmaceutical Group Co. Ltd., Yuncheng 044602 (China).

Published: April 2014

With the recent advances in nanoscience and nanotechnology, more and more nanoparticle catalysts featuring high accessibility of active sites and high surface area have been explored for their use in various chemical transformations, and their rise in popularity among the catalysis community has been unprecedented. The industrial applications of these newly discovered catalysts, however, are hampered because the existing methods for separation and recycling, such as filtration and centrifugation, are generally unsuccessful. These limitations have prompted development of new methods that facilitate separation and recycling of nanoparticle catalysts, so as to meet the burgeoning demands of green and sustainable chemistry. Recently, we have found that Pickering-emulsion inversion is an appealing strategy with which to realize in situ separation and recycling of nanoparticle catalysts and thereby to establish sustainable catalytic processes. We feel that at such an early stage, this strategy, as an alternative to conventional methods, is conceptually new for readers but that it has potential to become a popular method for green catalysis. This Concept article aims to provide a timely link between previous efforts and both current and future research on nanoparticle catalysts, and is expected to facilitate further investigation into this strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201300962DOI Listing

Publication Analysis

Top Keywords

nanoparticle catalysts
20
recycling nanoparticle
12
separation recycling
12
pickering-emulsion inversion
8
catalysts
6
nanoparticle
5
strategy
4
inversion strategy
4
strategy separating
4
recycling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!