Redox-neutral α,β-difunctionalization of cyclic amines.

Angew Chem Int Ed Engl

Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (USA) http://seidel-group.com/

Published: May 2014

In contrast to the continuously growing number of methods that allow for the efficient α-functionalization of amines, few strategies exist that enable the direct functionalization of amines in the β-position. A general redox-neutral strategy is outlined for amine β-functionalization and α,β-difunctionalization that utilizes enamines generated in situ. This concept is demonstrated in the context of preparing polycyclic N,O-acetals from simple 1-(aminomethyl)-β-naphthols and 2-(aminomethyl)-phenols.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4068263PMC
http://dx.doi.org/10.1002/anie.201311165DOI Listing

Publication Analysis

Top Keywords

redox-neutral αβ-difunctionalization
4
αβ-difunctionalization cyclic
4
cyclic amines
4
amines contrast
4
contrast continuously
4
continuously growing
4
growing number
4
number methods
4
methods allow
4
allow efficient
4

Similar Publications

Dual Photoredox and Copper-Catalyzed Asymmetric Remote C(sp)-H Alkylation of Hydroxamic Acid Derivatives with Glycine Derivatives.

J Org Chem

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.

Dual photoredox and copper-catalyzed remote asymmetric C(sp)-H alkylation of hydroxamic acid derivatives with glycine derivatives via a 1,5-hydrogen transfer (1,5-HAT) process has been realized. The reaction was characterized by redox-neutral and mild conditions, good yields, excellent enantioselectivity, and broad substrate scope. This protocol provides a straightforward and efficient strategy to prepare highly valuable enantioenriched noncanonical α-amino acids.

View Article and Find Full Text PDF

A novel silver-catalyzed cascade radical isonitrile insertion and defluorinative cyclization have been developed to synthesize CFH- and phosphinoyl-containing quinolines from -isocyanyl α-trifluoromethylstyrenes. The reaction proceeded under redox-neutral conditions and allowed the construction of a highly attractive quinoline ring system, with the simultaneous formation of the CFH group and introduction of various phosphinoyl groups in a single transformation, showing operational simplicity, a wide substrate scope, good tolerance for functional groups, and remarkable atom-/stepeconomy. Mechanistic studies indicated that the reaction is likely to involve the participation of P-centered radicals and key carbanion intermediates.

View Article and Find Full Text PDF

Herein, we report a formal C-C bond azidation and cyanation of unactivated aliphatic ketones using commercially available tosyl azide and cyanide, respectively. A visible-light-mediated organophotocatalyst enables radical azidation and cyanation of ketone-derived pro-aromatic dihydroquinazolinones (under mostly redox-neutral conditions) as supported by preliminary mechanistic studies. These metal-free and scalable protocols can be used to synthesize tertiary, secondary, and primary alkyl azides and nitriles with good functional group tolerance and postsynthetic diversification of the azide group, including bioconjugation.

View Article and Find Full Text PDF

The direct synthesis of C(sp)-rich architectures is a driving force for innovation in synthetic organic chemistry. Such scaffolds impart beneficial properties onto drug molecules that correlate with greater clinical success. Consequently, there is a strong impetus to develop new methods by which to access sp-rich molecules from commercial feedstocks, such as alkenes.

View Article and Find Full Text PDF

Mapping the molecular mechanism of zinc catalyzed Suzuki-Miyaura coupling reaction: a computational study.

Org Biomol Chem

January 2025

Department of Chemistry, CMS College Kottayam (Autonomous), Kottayam, Kerala, 686001, India.

The Suzuki-Miyaura Coupling (SMC) reaction is a powerful method for forming carbon-carbon bonds in organic synthesis. Recent advancements in SMC reactions have introduced first-row transition metal catalysts, with zinc garnering significant interest due to its cost-effective and eco-friendly nature. Despite progress in experimental protocols, the mechanistic details of zinc-catalyzed SMC reactions are limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!