Six strains of Bacillus thuringiensis previously selected as highly toxic against Manduca sexta and Plutella xylostella were analyzed by PCR screening in order to identify the cry genes active on Lepidoptera. According to their gene content and insecticidal potency, these strains were cultured and aliquots taken at different pre- and post-sporulation times. Total RNA was extracted and used as template in RT-PCR analyses directed to identify mRNAs of the previously identified cry genes. Results showed transcription of genes cry1A, cry1E, cry1I, and cry2 even before the onset of sporulation. However, this early transcription did not lead to an appreciable parasporal protein synthesis until t5-t9, as deduced from SDS-PAGE profiles. As for cry1I gene, the corresponding protein was not detected, as expected, but cry1I mRNAs were present at least until t5. Interestingly, strains expressing four cry genes from the end of the log phase onwards exhibited kinetics characterized by a very long transition phase, whereas the strain expressing only one cry gene showed a very short transition phase. Strains expressing three genes showed an intermediate profile. These results indicate that the transcription of B. thuringiensis cry1 and cry2 genes in natural strains can start several hours before massive crystal synthesis occurs and that this translation is probably competing with transcriptional regulators required for the sporulation onset.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10482-014-0160-1 | DOI Listing |
Metabolites
December 2024
Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA.
Circadian rhythms are intrinsic, 24 h cycles that regulate key physiological, mental, and behavioral processes, including sleep-wake cycles, hormone secretion, and metabolism. These rhythms are controlled by the brain's suprachiasmatic nucleus, which synchronizes with environmental signals, such as light and temperature, and consequently maintains alignment with the day-night cycle. Molecular feedback loops, driven by core circadian "clock genes", such as Clock, Bmal1, Per, and Cry, are essential for rhythmic gene expression; disruptions in these feedback loops are associated with various health issues.
View Article and Find Full Text PDFBMC Genomics
December 2024
Department of Entomology, University of Maryland, College Park, MD, 20742, USA.
Strong and shifting selective pressures of the Anthropocene are rapidly shaping phenomes and genomes of organisms worldwide. Crops expressing pesticidal proteins from Bacillus thuringiensis (Bt) represent one major selective force on insect genomes. Here we characterize a rapid response to selection by Bt crops in a major crop pest, Helicoverpa zea.
View Article and Find Full Text PDFBiochem Pharmacol
December 2024
Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, PR China. Electronic address:
Sleep deprivation (SD) causes circadian misalignment, and circadian clock disruption is associated with metabolic diseases such as obesity, insulin resistance, and diabetes. However, the underlying mechanism for SD-induced circadian clock disruption as well as metabolic enzyme changes is still lacking. Here, we developed SD sensitizes mice with disrupted circadian rhythms to demonstrate the regulation role and mechanism of SD in UDP-glucuronosyltransferases (UGTs) expression and the metabolism of corresponding substrates.
View Article and Find Full Text PDFPestic Biochem Physiol
December 2024
School of Life Sciences, Central China Normal University, Wuhan 430070, China. Electronic address:
Bacillus thuringiensis (Bt) produces Cry toxins that are used to control insect pests worldwide. However, evolution of insect resistance threatens the sustainable application of these toxins. In some cases, Cry toxin resistance has been linked to mutations affecting toxin receptors expression.
View Article and Find Full Text PDFCancer Cell
December 2024
Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA. Electronic address:
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults with a poor prognosis despite aggressive therapy. Here, we hypothesized that daily host signaling regulates tumor growth and synchronizes circadian rhythms in GBM. We find daily glucocorticoids promote or suppress GBM growth through glucocorticoid receptor (GR) signaling depending on time of day and the clock genes, Bmal1 and Cry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!