Objective: Forsythin (FOR) is an active ingredient extracted from the fruit of the medicinal plant Forsythia suspensa (Thunb.) Vahl. Here, we investigated the effect of FOR on LPS-induced inflammatory response and the underlying molecular mechanisms in RAW264.7 macrophages.
Materials And Methods: RAW264.7 cells were pre-treated with or without FOR and then stimulated with or without LPS. The productions of TNF-α, IL-1β, IL-6, PGE2 and NO were determined by ELISA and nitrite analysis, respectively. The expressions of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were measured by Western blotting and RT-PCR analysis. The activations of signaling molecules were detected by Western blotting using phosphorylation specific antibodies. Reactive oxygen species (ROS) production was determined by ROS assay.
Results: LPS-induced productions of IL-1β, IL-6, TNF-α, NO and PGE2 were inhibited by FOR in a dose-dependent manner. FOR also suppressed the LPS-elevated expressions of iNOS and COX-2. Further investigations revealed that FOR significantly inhibited the LPS-induced activations of JAK-STATs and p38 MAPKs, but not of IKKα/β in LPS-stimulated RAW264.7 cells. Additionally, FOR interfered with both JAK-STATs and p38 MAPKs signaling pathways to modulate the expressions of IL-1β, IL-6, TNF-α, iNOS and COX-2. Furthermore, FOR reduced the LPS-induced ROS accumulation, validating that FOR serves as an antioxidant.
Conclusions: Our data suggested that FOR exerts anti-inflammatory action, at least in part, via suppressing LPS-induced activation of JAK-STATs and p38 MAPKs signalings and production of ROS in macrophage cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00011-014-0731-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!