A structure-based model for predicting serum albumin binding.

PLoS One

Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America.

Published: December 2015

One of the many factors involved in determining the distribution and metabolism of a compound is the strength of its binding to human serum albumin. While experimental and QSAR approaches for determining binding to albumin exist, various factors limit their ability to provide accurate binding affinity for novel compounds. Thus, to complement the existing tools, we have developed a structure-based model of serum albumin binding. Our approach for predicting binding incorporated the inherent flexibility and promiscuity known to exist for albumin. We found that a weighted combination of the predicted logP and docking score most accurately distinguished between binders and nonbinders. This model was successfully used to predict serum albumin binding in a large test set of therapeutics that had experimental binding data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972100PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0093323PLOS

Publication Analysis

Top Keywords

serum albumin
16
albumin binding
12
structure-based model
8
binding
8
albumin
6
model predicting
4
serum
4
predicting serum
4
binding factors
4
factors involved
4

Similar Publications

Background/objectives: Sepsis-related acute kidney injury (SA-AKI) is a severe condition characterized by high mortality rates. The utility of the sCAR (secrum creatinine/albumin) and LAR (Lactate dehydrogenase/albumin) as diagnostic markers for persistent severe SA-AKI remains unclear.

Methods: We acquired training set data from the MIMIC-IV database and validation set data from the First Affiliated Hospital of Harbin Medical University.

View Article and Find Full Text PDF

Association of Naples Prognostic Score with cardiovascular disease risk and its longitudinal prognostic impact on mortality in cardiovascular disease patients: Evidence from NHANES.

Nutr Metab Cardiovasc Dis

December 2024

Department of Geriatrics Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China. Electronic address:

Background And Aim: The Naples Prognostic Score (NPS) predicts outcomes in various diseases, but its impact on cardiovascular disease (CVD) is understudied. This study investigates the association between NPS and CVD prevalence and mortality among US adults.

Methods And Results: This study utilized data from the Continuous National Health and Nutrition Examination Survey (NHANES) conducted between 1999 and 2016, with mortality follow-up data available through December 31, 2019.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Danggui Buxue Decoction (DBD) is a classic traditional Chinese herbal formulation, composed of Astragali Radix (AR) and Angelica Sinensis Radix (ASR) in a ratio of 5:1. It is a traditional Chinese medicine classic prescription for nourishing Qi and Yin (vital energy and body fluids), and it is effective in treating various clinical diseases. Diabetic nephropathy (DN) is categorized under "thirsting," "edema," and "turbid urine" in Traditional Chinese Medicine (TCM).

View Article and Find Full Text PDF

Role of PI3K/AKT signaling pathway during capacitation.

Theriogenology

January 2025

Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, 37224, Republic of Korea. Electronic address:

Spermatozoa must undergo a complex maturation process within the female genital tract known as capacitation. This process entails the phosphorylation or dephosphorylation of various proteins, and multiple signaling pathways are recognized to play a role. The present study aims to identify alterations in the expression of proteins related to the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT) signaling pathway and assess sperm functions during capacitation.

View Article and Find Full Text PDF

BRD4-targeted photodegradation nanoplatform for light activatable melanoma therapy.

Biomaterials

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China. Electronic address:

The targeted protein degradation (TPD) strategy modulates tumor growth pathways by degrading proteins of interest (POIs) and has reshaped anti-tumor drug research and development. Recently, the emergence of photodegradation-targeting chimeras (PDTACs) and laser irradiation at specific sites enables precise spatiotemporal controllability of TPD. Capitalizing on the advances of PDTACs, herein, we report a nanoplatform for efficiently delivering PDTAC molecule for photodegradation of bromodomain-containing protein 4 (BRD4) proteins, the key activators of oncogenic transcription.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!