Lymph nodes (LNs) are integral sites for the generation of immune tolerance, migration of CD4⁺ T cells, and induction of Tregs. Despite the importance of LNs in regulation of inflammatory responses, the LN-specific factors that regulate T cell migration and the precise LN structural domains in which differentiation occurs remain undefined. Using intravital and fluorescent microscopy, we found that alloreactive T cells traffic distinctly into the tolerant LN and colocalize in exclusive regions with alloantigen-presenting cells, a process required for Treg induction. Extracellular matrix proteins, including those of the laminin family, formed regions within the LN that were permissive for colocalization of alloantigen-presenting cells, alloreactive T cells, and Tregs. We identified unique expression patterns of laminin proteins in high endothelial venule basement membranes and the cortical ridge that correlated with alloantigen-specific immunity or immune tolerance. The ratio of laminin α4 to laminin α5 was greater in domains within tolerant LNs, compared with immune LNs, and blocking laminin α4 function or inducing laminin α5 overexpression disrupted T cell and DC localization and transmigration through tolerant LNs. Furthermore, reducing α4 laminin circumvented tolerance induction and induced cardiac allograft inflammation and rejection in murine models. This work identifies laminins as potential targets for immune modulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4001556PMC
http://dx.doi.org/10.1172/JCI73683DOI Listing

Publication Analysis

Top Keywords

immune tolerance
8
alloreactive cells
8
alloantigen-presenting cells
8
laminin α4
8
α4 laminin
8
laminin α5
8
tolerant lns
8
laminin
7
lns
5
cells
5

Similar Publications

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent joint inflammation, damage, and loss of function. In recent years, the role of gut microbiota and its metabolites in immune regulation has attracted increasing attention. The gut microbiota influences the host immune system's homeostasis through various mechanisms, regulating the differentiation, function, and immune tolerance of immune cells.

View Article and Find Full Text PDF

Effects of Food Processing on Allergenicity.

Curr Allergy Asthma Rep

January 2025

Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.

Purpose Of Review: There is an increasing awareness among clinicians that industrial and household food processing methods can increase or decrease the allergenicity of foods. Modification to allergen properties through processing can enable dietary liberations. Reduced allergenicity may also allow for lower risk immunotherapy approaches.

View Article and Find Full Text PDF

Egg allergen-specific T-cell and cytokine responses in healthy and egg-allergic children naturally tolerating baked egg.

Pediatr Allergy Immunol

January 2025

Department of Microbiology, Immunology and Transplantation, Allergy and Immunology Research Group, KU Leuven, Leuven, Belgium.

Background: Type 1 regulatory T (Tr1) cells are critical players in maintaining peripheral tolerance, by producing high IL-10 levels in association with inducible T-cell co-stimulator (ICOS) expression. Whether these cells play a role in naturally acquired baked egg tolerance is unknown.

Objectives: Evaluate frequencies of egg-responsive Tr1 and Th2 cells in egg-allergic children that naturally acquired baked egg tolerance (BET) versus non-egg-allergic (NEA) children.

View Article and Find Full Text PDF

This systematic review updated the available evidence on the effectiveness and safety of probiotics as treatment of food allergy among pediatric patients. We conducted a systematic search for all randomized controlled trials available until March 13, 2024 that evaluated the effectiveness and safety of probiotics for treating pediatric food allergy. Two authors independently conducted the search, screening, and data extraction.

View Article and Find Full Text PDF

Evaluation of Intestinal Permeability Using Serum Biomarkers in Learning Early About Peanut Allergy Trial.

Allergy

January 2025

Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, Maryland, USA.

Background: Intestinal barrier dysfunction may lead to a break in tolerance and development of food allergy (FA). There is contradictory evidence on whether intestinal permeability (IP) is altered in IgE-mediated FA. Thus, we sought to determine whether IP differed between children with eczema who did (FA group) or did not (atopic controls, ACs) develop FA and whether peanut sensitization, allergy, and early introduction impacted IP using serum biomarkers zonulin, soluble CD14, and Intestinal Fatty Acid Binding Protein among randomly selected participants enrolled in the Learning Early About Peanut allergy trial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!